Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:37:13.646Z Has data issue: false hasContentIssue false

Texture of Polycrystalline MoSx Thin Films Magnetron Sputtered from a Metallic Target in Ar-H2S Atmospheres

Published online by Cambridge University Press:  01 February 2011

Volkmar Weiß
Affiliation:
Hahn-Meitner-Institut Berlin, Dept. Solare Energetik, Glienicker Str. 100, D-14109 Berlin, Germany.
Rainald Mientus
Affiliation:
Optotransmitter-Umweltschutz-Technologie e.V., Köpenicker Str. 325b, D-12555 Berlin, Germany.
Klaus Ellmer
Affiliation:
Hahn-Meitner-Institut Berlin, Dept. Solare Energetik, Glienicker Str. 100, D-14109 Berlin, Germany.
Get access

Abstract

The textured film growth of polycrystalline MoSx films on Si substrates deposited by reactive magnetron sputtering with H2S from a molybdenum target has been investigated. Over a wide range of gas flow ratios FH2S/(FH2S+FAr) from 1% to 75% only x-ray diffraction patterns of randomly stacked S-Mo-S layers of the MoS2 phase were detected which indicates turbostratic growth of the van-der-Waals layers comparable to the growth of graphite at low temperatures. The extended distance of the c-lattice planes depends on the sputtering conditions and can also be explained by the turbostratic model. Low deposition rates and high substrate temperatures improved the quality of the films towards the requested (001) texture and low c-lattice strain. The results from the in situ-energy dispersive x-ray diffraction (EDXRD) technique using synchrotron radiation allowed kinetic calculations of the time dependent behaviour of the peak area of the (0 0 21) Bragg reflection signals according to the Johnson-Mehl-Avrami model. They revealed that the grain growth is restricted in dimensions if a completed nucleation is assumed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tributsch, H., Z. Naturforsch. 32a, 972 (1977).Google Scholar
2. Bernède, J. C., Pouzet, J., Gourmelon, E. and Hadouda, H., Synthetic Metals 99, 45 (1999).Google Scholar
3. Ouerfelli, J., Bernède, J. C., Khelil, A. and Pouzet, J., Appl. Surf. Sci. 120, 1 (1997).Google Scholar
4. Ponomarev, E. A., Tenne, R., Katty, A. and Levy-Clement, C., Sol. Energ. Mat. Sol. C. 52, 125 (1998).Google Scholar
5. Ellmer, K., J. Phys. D: Appl. Phys. 33, R17 (2000).Google Scholar
6. Ellmer, K., Mientus, R., Weiß, V. and Rossner, H., Nucl. Instr. Meth. Phys. Res. A 467-468, 1041 (2001).Google Scholar
7. Birkholz, M., Bohne, W., Röhrich, J., Jäger-Waldau, A. and Lux-Steiner, M. C., J. Crystal Growth 197, 571 (1999).Google Scholar
8. Moser, J. H. and Levy, F., Thin Solid Films 240, 56 (1994).Google Scholar
9. Otto, J. W., J. Appl. Cryst. 30, 1008 (1997).Google Scholar
10. Gerward, L., Morup, S. and Topsoe, H., J. Appl. Phys. 47, 822 (1976).Google Scholar
11. Borsella, E., Botti, S., Cesile, M. C., Martelli, S. and Nesterenko, A., Materials Science Forum 278-281, 636 (1998).Google Scholar
12. Avrami, M., J. Chem. Phys. 7, 1103 (1939).Google Scholar
13. Johnson, W. A. and Mehl, R. F., Trans. Amer. Inst. Min. Metall. Eng. 135, 416 (1939).Google Scholar
14. Humphreys, F. J. and Hatherly, M., Recrystallization and Related Annealing Phenomena, Pergamon, Oxford 1995, p.189.Google Scholar
15. Hinze, J. and Ellmer, K., J. Appl. Phys. 88, 2443 (2000).Google Scholar