Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T02:32:35.616Z Has data issue: false hasContentIssue false

Temporal Pulse Shaping and Optimization in Ultrafast Laser Ablation of Materials

Published online by Cambridge University Press:  15 February 2011

R. Stoian
Affiliation:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born Strasse 2a, 12489 Berlin, Germany
S. Winkler
Affiliation:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born Strasse 2a, 12489 Berlin, Germany
M. Hildebrand
Affiliation:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born Strasse 2a, 12489 Berlin, Germany
M. Boyle
Affiliation:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born Strasse 2a, 12489 Berlin, Germany
A. Thoss
Affiliation:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born Strasse 2a, 12489 Berlin, Germany
M. Spyridaki
Affiliation:
Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1527, 71110 Heraklion, Crete, Greece
E. Koudoumas
Affiliation:
Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1527, 71110 Heraklion, Crete, Greece
N.M. Bulgakova
Affiliation:
Institute of Thermophysics SB RAS, 1 Acad. Lavrentyev Avenue, 630090 Novosibirsk, Russia
A. Rosenfeld
Affiliation:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born Strasse 2a, 12489 Berlin, Germany
P. Tzanetakis
Affiliation:
Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1527, 71110 Heraklion, Crete, Greece
C. Fotakis
Affiliation:
Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1527, 71110 Heraklion, Crete, Greece
I.V. Hertel
Affiliation:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born Strasse 2a, 12489 Berlin, Germany
Get access

Abstract

The possibility of phase manipulation and temporal tailoring of ultrashort laser pulses enables new opportunities for optimal processing of materials. Phase-manipulated ultrafast laser pulses allow adapting the laser energy delivery rate to the material properties for optimal processing laying the groundwork for adaptive optimization in materials structuring. Different materials respond with specific reaction pathways to the sudden energy input depending on the efficiency of electron generation and on the ability to release the energy into the lattice. The sequential energy delivery with judiciously chosen pulse trains may induce softening of the material during the initial steps of excitation and change the energy coupling for the subsequent steps. We show that this can result in lower stress, cleaner structures, and allow for a materialdependent optimization process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

1. Ashkenasi, D., Varel, H.. Rosenfeld, A., Noack, F., and Campbell, E.E.B., Nucl. Instr. Meth. B 122, 359 (1997)Google Scholar
2. Varel, H., Ashkenasi, D., Rosenfeld, A., Herrmann, R, Noack, F., and Campbell, E. E. B., Appl. Phys. A: Mater. Sci. Process. 62, 293 (1996)Google Scholar
3. Korte, F., Nolte, S., Chichkov, B.N., Bauer, T., Kamlage, G., Wagner, T., Fallnich, C., and Welling, H., Appl. Phys. A: Mater. Sci. Process. 69, S7 (1999)Google Scholar
4. Glezer, E.N. and Mazur, E., Appl. Phys. Lett. 71, 882 (1997)Google Scholar
5. Liu, X., Du, D., and Mourou, G., IEEE J. Quantum. Elec. 33, 1706 (1997)Google Scholar
6. Stoian, R., Boyle, M., Thoss, A., Rosenfeld, A., Korn, G., Campbell, E. E. B. and Hertel, I. V., Appl. Phys. Lett. 80, 353 (2002)Google Scholar
7. Sokolowski-Tinten, K., Solis, J., Bialkowski, J., Siegel, J., Afonso, C.N., and Linde, D. von der, Phys. Rev. Lett. 81, 3679 (1998)Google Scholar
8. Stuart, B.C., Feit, M.D., Rubenchik, A.M., Shore, B.W., and Perry, M.D., Phys. Rev. Lett. 74, 2248 (1995)Google Scholar
9. Tien, A.-C., Backus, S., Kapteyn, H., Murnane, M., and Mourou, G., Phys. Rev. Lett. 82, 3883 (1999)Google Scholar
10. Lezner, M., Krüger, J., Sartania, S., Cheng, Z., Spielmann, Ch., Mourou, G., Kautek, W., and Krausz, F., Phys. Rev. Lett. 80, 4076 (1998)Google Scholar
11. Sherman, N.K., Brunel, F., Corkum, P.B., and Hegman, F.A., Opt. Eng. 28, 1114 (1989)Google Scholar
12. Wellershoff, S.S., Hohlfeld, J., Gudde, J., and Matthias, E., Appl. Phys. A: Mater. Sci. Process. 69, S99 (1999)Google Scholar
13. Schmidt, V., Husinsky, W., and Betz, G., Phys. Rev. Lett. 85, 3516 (2000)Google Scholar
14. Siders, C.W., Cavalleri, A., Sokolowski-Tinten, K., Toth, C., Guo, T., Kammler, M., Hoegen, M.H. von, Wilson, K.R., Linde, D. von der, and Barty, C.P.J., Science 286, 1340 (1999)Google Scholar
15. Rousse, A., Rischel, C., Fourmaux, S., Uschmann, I, Sebban, S., Grillon, G., Balcou, P, Foster, E., Geindre, J.P., Audebert, P., Gauthier, J.C., and Hulin, D., Nature 410, 65 (2001)Google Scholar
16. Stoian, R., Rosenfeld, A., Ashkenasi, D., Hertel, I. V., Bulgakova, N. M., and Campbell, E. E. B., Phys. Rev. Lett. 88, 0976031 (2002)Google Scholar
17. Stoian, R., Ashkenasi, D., Rosenfeld, A., and Campbell, E.E.B., Phys. Rev. B 62, 13167 (2000)Google Scholar
18. Korte, F., Adams, S., Egbert, A., Fallnich, C., and Ostendorf, A., Opt. Exp. 7, 41 (2000)Google Scholar
19. Guizard, S., DOliveira, P., Daguzan, P., Martin, P., Meynadier, P., and Petite, G., Nucl. Instr. Meth. Phys. B 116, 43 (1996)Google Scholar
20. Quere, F., Guizard, S., Martin, P., Petite, G., Gobert, O., Meynadier, P., and Perdrix, M., Appl. Phys. B Lasers O 68, 459 (1999)Google Scholar
21. Li, M., Menon, S., Nibarger, J.P., and Gibson, G.N., Phys. Rev. Lett. 82, 2394 (1999)Google Scholar
22. Meshulach, D. and Silberberg, Y., Nature 396, 239 (1998)Google Scholar
23. Assion, A., Baumert, T., Bergt, M., Brixner, T., Kiefer, B., Seyfried, V., Strehle, M., and Gerber, G., Science 282, 919 (1998)Google Scholar
24. Bartels, R., Backus, S., Zeek, E., Misoguti, L., Vdovin, G., Christov, I.P., Murnane, M.M., and Kapteyn, H.C., Nature 406, 164 (2000)Google Scholar
25. Weiner, A. M., Rev. Sci Instrum. 71, 1929 (2000)Google Scholar
26. Herman, P.R., Oettl, A., Chen, K.P., and Marjoribanks, R.S., Proc. SPIE 3616, 148 (1999)Google Scholar
27. Schaffer, C.B., Brodeur, A., Garcia, J.F., and Mazur, E., Opt Lett. 26, 93 (2001)Google Scholar
28. Tam, A.C., Brand, J.L., Cheng, D.C., and Zapka, W., Appl. Phys. Lett. 55, 2045 (1989)Google Scholar
29. Stoian, R., Varel, H., Rosenfeld, A., Ashkenasi, D., Kelly, R., and Campbell, E.E.B., Appl. Surf. Sci. 165, 44 (2000)Google Scholar
30. Ashkenasi, D., Lorenz, M., Stoian, R., and Rosenfeld, A., Appl. Surf. Sci. 150, 101 (1999)Google Scholar
31. Ashkenasi, D., Stoian, R., and Rosenfeld, A., Appl. Surf. Sci. 154-155, 40 (2000)Google Scholar
32. Lindner, R., Reichling, M., Williams, R.T., and Matthias, E., J. Phys.: Condens. Matter 13, 2339 (2001)Google Scholar
33. Siegel, J., Ettrich, K., Welsch, E., and Matthias, E., Appl.Phys.A 64, 213 (1997)Google Scholar