Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:03:50.252Z Has data issue: false hasContentIssue false

A template-assisted self-organization process for the formation of a linear arrangement of pairs of metallic tips

Published online by Cambridge University Press:  28 February 2014

Katharina Brassat
Affiliation:
Department of Physics, University of Paderborn, 33098 Paderborn, Germany Center for Optoelectronics and Photonics Paderborn CeOPP, 33098 Paderborn, Germany
Jörg K.N. Lindner
Affiliation:
Department of Physics, University of Paderborn, 33098 Paderborn, Germany Center for Optoelectronics and Photonics Paderborn CeOPP, 33098 Paderborn, Germany
Get access

Abstract

A novel process for the formation of pairs of opposing metallic nanotips within linear trenches on a silicon wafer is investigated in detail. The process is based on a spreading knife technique typically used in nanosphere lithography to generate monolayers of colloidal polystyrene beads. Here it is applied to initiate self-assembly of spheres in long linear trenches acting as a template for the sphere arrangement. The optimum blade velocity to deposit the spheres selectively and densely packed in the trench depends on the trench surface fraction and can be described by a modified Dimitrov model. It is demonstrated that the spheres can be used as a shadow mask to deposit metallic nanotips in a channel, which are electrically interconnected on each side of the trench, possibly enabling the control and manipulation of nanoobjects in the channel.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bhushan, B., Springer Handbook of Nanotechnology, 2nd ed. (Springer Science+Business Media Inc., New York, 2007).10.1007/978-3-540-29857-1CrossRefGoogle Scholar
Silván, M. Manso, Messina, G. M., Montero, I., Satriano, C., García-Ruiz, J. P. and Marletta, G., J. Mater. Chem. 19, 5226 (2009).10.1039/b903820eCrossRefGoogle Scholar
Choi, S., Pisano, A. P. and Zohdi, T. I., Mater. Res. Soc. Symp. Proc. 1196, C02 (2010).Google Scholar
Mitsui, T., Wakayama, Y., Onodera, T., Takaya, Y. and Oikawa, H., Nano Lett. 8, 853 (2008).10.1021/nl073006wCrossRefGoogle Scholar
Mitsui, T., Onodera, T., Wakayama, Y., Hayashi, T., Ikeda, N., Sugimoto, Y., Takamasu, T. and Oikawa, H., Opt. Express 19, 22258 (2011).10.1364/OE.19.022258CrossRefGoogle Scholar
Deckmann, H. W. and Dunsmuir, J. H., Appl. Phys. Lett. 41, 377 (1982).10.1063/1.93501CrossRefGoogle Scholar
Haynes, Ch. L. and Van Duyne, R. P., J. Phys. Chem. B 105, 5599 (2001).10.1021/jp010657mCrossRefGoogle Scholar
Riedl, T., Strake, M., Sievers, W. and Lindner, J.K.N., these proceedingsGoogle Scholar
Lindner, J. K. N., Gehl, B. and Stritzker, B., Nucl. Instr. Meth. Phys. Res. B 242, 167 (2006).10.1016/j.nimb.2005.08.067CrossRefGoogle Scholar
Gogel, D., Weinl, M., Lindner, J. K. N. and Stritzker, B., J. Optoelectr. Adv. Mater. 12, 740 (2010).Google Scholar
Brassat, K., Assion, F., Hilleringmann, U. and Lindner, J.K.N., Phys. Stat. Sol. A 201, 1485 (2013).10.1002/pssa.201200899CrossRefGoogle Scholar
Dimitrov, A. and Nagayama, K., Langmuir 12, 1303 (1996).10.1021/la9502251CrossRefGoogle Scholar
Bhushan, B. and Jung, Y. C., Ultramicroscopy 107, 1033 (2007).10.1016/j.ultramic.2007.05.002CrossRefGoogle Scholar
Nosonovsky, M. and Bhushan, B., Microsyst. Technol. 11, 535 (2005).10.1007/s00542-005-0602-9CrossRefGoogle Scholar