Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:43:46.373Z Has data issue: false hasContentIssue false

Temperature-Dependent Photoluminescence of Silicon Nanocrystallites Prepared by Inert-Gas-Ambient Pulsed Laser Ablation

Published online by Cambridge University Press:  10 February 2011

I. Umezu
Affiliation:
Department of Applied Physics, Konan University, Higashinada Kobe, 658, Japan
S. Yamaguchi
Affiliation:
Department of Applied Physics, Konan University, Higashinada Kobe, 658, Japan
K. Shibata
Affiliation:
Department of Applied Physics, Konan University, Higashinada Kobe, 658, Japan
A. Sugimura
Affiliation:
Department of Applied Physics, Konan University, Higashinada Kobe, 658, Japan
Y. Yamada
Affiliation:
Matsushita Research Institute Tokyo, Inc., 3-10-1 Higashimita, Tama-ku, Kawasaki 214, Japan
T. Yoshida
Affiliation:
Matsushita Research Institute Tokyo, Inc., 3-10-1 Higashimita, Tama-ku, Kawasaki 214, Japan
Get access

Abstract

The inert-gas-ambient pulsed laser ablation technique is a promising method for preparing Si nanocrystallites. We measured the temperature dependence of photoluminescence (PL) spectra to investigate radiative and nonradiative recombination processes in the nanocrystallites prepared using this method. The Si nanocrystallites showed visible PL bands in the red (1.6 eV) and green (2.1 eV) spectral regions. The intensities of the red and green PL increased with decreasing temperature and then saturated below 80 K. This temperature dependence was compared with that of other photoluminescent Si materials. It was shown that the PL quantum efficiency of the Si nanocrystallites was larger than that of a-Si:H at high temperatures. One of the reasons for the difference in the temperature dependence between the Si nanocrystallite and a-Si:H is the change in the role of defects in the nonradiative recombination process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L.T.: Appl. Phys. Lett. 57, (1990) 1046.Google Scholar
2. Furukawa, S. and Miyasato, T.: Jpn. J. Appl. Phys. 27(1988) L2207.Google Scholar
3. Takagi, H., Ogawa, H., Yamazaki, Y., Ishizaki, A. and Nakagiri, T.: Appl. Phys. Lett. 56, (1990) 2379.Google Scholar
4. Yosida, Y., Takeyama, S., Yamada, Y. and Mutoh, K.: J. Appl. Phys. 68, (1996) 1772.Google Scholar
5. Takagahara, T. and Takeda, K.: Phys. Rev. B 46, (1992) 15578.Google Scholar
6. Lu, Z.H., Lockwood, D.J. and Baribeau, J.M.: Nature 378, (1995) 258.Google Scholar
7. Brandt, M.S., Fuchs, H.D., Stutzmann, M., Weber, J. and Cardona, M.: Solid State Commun. 81, (1992) 307.Google Scholar
8. Prokes, S.M., Glembocki, O.J., Bermudez, V.M., Kaplan, R., Friedersdorf, L.E. and Searson, P. C.: Phys. Rev. B 45, (1992) 13788 Google Scholar
9. Qin, G.G. and Jia, Y.Q.: Solid State Commun. 86, (1993) 559.Google Scholar
10. Kanemitsu, Y., Uto, H., Masumoto, Y., Matsumoto, T., Futagi, T. and Mimura, H.: Phys. Rev. B 48, (1993) 2827.Google Scholar
11. Koch, F., Petrova-Koch, V., Muschik, T., Nikolov, A. and Gavrilenko, V.: Mater. Res. Soc. Symp. Proc. 283, (1993) 197.Google Scholar
12. Feng, Z. C. and Tsu, R.: Porous Silicon (World Scientific, Singapore, 1994).Google Scholar
13. Kanemitsu, Y.: Physics Reports 263, (1995) 1.Google Scholar
14. Henry, C.H. and Lang, D.V.: Phys. Rev. B 15, (1977) 989.Google Scholar
15. Street, R.A.: Semiconductor and Semimetals (Academic, New York, 1984) Vol.21 -B 197.Google Scholar
16. Yamada, Y., Orii, T., Umezu, I., Takeyama, S. and Yoshida, T.: Jpn. J. Appi. Phys. 35, (1996) 13611365.Google Scholar
17. Kanemitsu, Y., Uto, H. and Masumoto, Y.: Phys. Rev. B 48, (1993) 2827.Google Scholar
18. Austin, I.G., Jackson, W.A., Searle, T.M., Bhat, P.K. and Gibson, R.A.: Philos. Mag. B 52, (1985) 271.Google Scholar
19. Pankove, J. I.: Optical processes in Semiconductors (Dover, New York, 1971).Google Scholar
20. Sze, S. M.: Physics of Semiconductor Devices (Wiley, New York, 1969).Google Scholar
21. Umezu, I., Ogawa, T. and Arai, T.: Jpn. J. Appl. Phys. 28, (1989) 477.Google Scholar