Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T15:06:04.196Z Has data issue: false hasContentIssue false

Temperature Dependent Structure Stability Studies on Thermoelectric Yb0.025Fe0.3Co0.7Sb3

Published online by Cambridge University Press:  23 March 2015

Mohsen Y. Tafti
Affiliation:
Department of Material and Nano-Physics, KTH Royal Institute of Technology, Stockholm Sweden.
Mohsin Saleemi
Affiliation:
Department of Material and Nano-Physics, KTH Royal Institute of Technology, Stockholm Sweden. Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Stockholm, Sweden
Mats Johnsson
Affiliation:
Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Stockholm, Sweden
Alexandre Jacquot
Affiliation:
Fraunhofer Institute for Physical Measurements, Freiburg, Germany
Muhammet S. Toprak
Affiliation:
Department of Material and Nano-Physics, KTH Royal Institute of Technology, Stockholm Sweden.
Get access

Abstract

Depending on their application temperature thermoelectric (TE) materials are classified in three main categories; as low (up to 250°C), intermediate (up to 550°C) and high (above 600°C) temperature. Currently, Skutterudites (CoSb3) based materials have shown promising results in the intermediate temperature range (300-500°C). This family of material is highly suitable for automotive, marine transportation and industrial power generation applications to recover the waste heat from the exhaust and generate electricity. Conventional TE modules need p- and n-type semiconductor materials and for the skutterudite family, iron (Fe) has proven to be among the best candidates for the substitution of cobalt sites. Additionally, rare earths are introduced as rattlers in the crystal cages of the skutterudite to decrease the thermal conductivity, thus improving the figure of merit ZT of the TE material. For practical application for device fabrication, stability of these materials is of great importance. Compositional stability is being addressed as the material decomposes above certain temperature. Temperature dependent x-ray diffraction study was performed on Fe substituted, Yb-filled skutterudites, using Beam Line I711 at MAX LAB, to observe the crystal structure as a function of temperature. Diffraction patterns were collected from room temperature up to 500°C by utilizing Huber furnace. The results show success in filling process showing almost 80% reduction of the thermal conductivity from bulk. Additionally the thermal expansion coefficient value was within the average value for skutterudites which proves practical application of this powder for industrial applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nolas, G.S., Morelli, D.T., and Tritt, T.M., Annual Review of Materials Science, 1999. 29(1): p. 89116. doi: 10.1146/annurev.matsci.29.1.89 CrossRefGoogle Scholar
Muhammed, M. and Toprak, M., Nanostructured Skutterudites, in Thermoelectrics Handbook: Macro to Nano. 2006, CRC Press.Google Scholar
Rowe, D.M., Thermoelectrics Handbook: Macro to Nano. 2010: CRC Press.Google Scholar
Zhou, C., Morelli, D.T., Zhou, X., G.Wang, , & Uher, C., Intermetallics, 2011. 19(10): p. 13901393. doi: 10.1016/j.intermet.2011.04.015 CrossRefGoogle Scholar
Lee, W.M., Shin, D.-K., and Kim, I.-H., Journal of Electronic Materials, 2014. p. 16. doi: 10.1007/s11664-014-3401-1 Google Scholar
Liu, R., Cho, J.Y., Yang, J., Zhang, W., Chen, L., Journal of Materials Science & Technology, 2014. doi: 10.1016/j.jmst.2014.05.007 Google Scholar
Park, K.H., Seo, W.S., Shin, D.K., Kim, I.H., Journal of the Korean Physical Society, 2014. 65(4): p. 491495. doi: 10.3938/jkps.65.491 CrossRefGoogle Scholar
Saleemi, M., Tafti, M. Y., Toprak, M. S., Stingaciu, M., Johnsson, M., Jägle, M., Jacquot, A. and Muhammed, M. (2013). MRS Proceedings, 1490, pp 121126. doi:10.1557/opl.2012.1643.CrossRefGoogle Scholar
Cerenius, Y., Ståhl, K., Svensson, L. A., Ursby, T., Oskarsson, Å., Albertsson, J. and Liljas, A., Journal of Synchrotron Radiation, 2000. 7(4): p. 203208. doi: 10.1107/S0909049500005331 CrossRefGoogle Scholar
Rogl, G., Grytsiv, A., Bauer, E., Rogl, P., Zehetbauer, M., Intermetallics, 2010. 18(1): p. 5764. doi: 10.1016/j.intermet.2009.06.005 CrossRefGoogle Scholar
Khana, A., Saleemi, M., Johnsson, M., Hand, L., Nong, N.V., Muhammed, M., Toprak, M.S. (2014). Journal of Alloys and Compounds, 612, 293300. doi: 10.1016/j.jallcom.2014.05.119 CrossRefGoogle Scholar
Toprak, M., Y.Z., Muhammed, M., A Zakhidov, A., H Baughman, R., Khayrullin, I., 18th International Conference on Thermoelectrics, 1999. doi: 10.1109/ICT.1999.843410 Google Scholar
Tafti, M. Y., Saleemi, M., Jacquot, A., Jägle, M., Muhammed, M. and Toprak, M. S., MRS Proceedings, 2013. 1543: p. 105110. doi: 10.1557/opl.2013.947 CrossRefGoogle Scholar
Rogl, G., Zhang, L., Rogl, P., Grytsiv, A., Falmbigl, M., Rajs, D., Kriegisch, M., Müller, H., Bauer, E., Koppensteiner, J., Schranz, W., Zehetbauer, M., Henkie, Z. and Maple, M. B.. (2010). Journal of Applied Physics, 107(4), 043507. doi: 10.1063/1.3284088 CrossRefGoogle Scholar