Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:38:58.989Z Has data issue: false hasContentIssue false

Temperature Dependence of Two-Dimensional Spin Anisotropies

Published online by Cambridge University Press:  03 September 2012

Roy Richter
Affiliation:
Physics Department, General Motors Research Laboratories, Warren, MI 48090–9055
Jack G. Gay
Affiliation:
Physics Department, General Motors Research Laboratories, Warren, MI 48090–9055
Get access

Abstract

Large anisotropy energy is an essential property of high quality permanent magnets. In previous work we have calculated the spin polarized electronic structure and anisotropy of monolayers and slabs of Fe, Ni, and V. In this work we calculate the dependence on temperature of the spin anisotropy of a ferromagnetic monolayer of Fe. We find the easy direction of magnetization is not sensitive to the temperature; the variations calculated here are likely too small to be observed. It is perpendicular to the plane of the surface for both low and high temperatures. The calculations become progressively more ill-behaved as the temperatures are lowered and require more computer time for satisfactory convergence.

For Fe/Cu {100}, we find the spins always prefer to point out of plane. Experimental results in general are consistent with this view, although the systems seem to be difficult to prepare.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Van Vleck, J. H., Phys. Rev. 52, 1178 (1937).CrossRefGoogle Scholar
2. Brooks, H., Phys. Rev. 58, 909 (1940).Google Scholar
3. Fletcher, G. C., Proc. Phys. Soc. (London) A67, 505 (1954).Google Scholar
4. Gay, J. G. and Richter, R., Phys. Rev. Lett. 56, 2728 (1986); J. Appl. Phys. 61, 3362 (1987).CrossRefGoogle Scholar
5. Smith, J. R., Gay, J. G., and Arlinghaus, F. J., Phys. Rev. B 21, 2201 (1980).Google Scholar
6. Jonker, B. T., Walker, K. H., Kisker, E., Prinz, G. A., and Carbone, C., Phys. Rev. Lett. 57, 142 (1986).CrossRefGoogle Scholar
7. Slater, J. C., Quantum Theory of Atomic Structure (McGraw-Hill Book Company, New York, 1960), Vol II, p. 180.Google Scholar
8. Bennett, A. J. and Cooper, B. R., Phys. Rev. B 3, 1642 (1971).Google Scholar
9. Takayama, H., Bohnen, K. P., and Fulde, P., Phys. Rev. B 14, 2287 (1976).Google Scholar
10. Mori, N., Ukai, T., and Ohtsuka, S., J. Magn. Magn. Mater. 31–34, 43(1983).Google Scholar
11. We have estimated the size of the terms discarded in approximating the spin-orbit matrix by the on-site elements of Eq. (2). For an Fe monolayer the largest element left out is about 600 times smaller than a typical on-site element.Google Scholar
12. Weinert, M., Watson, R. E., and Davenport, J. W., Phys. Rev. B 32, 2115 (1986).CrossRefGoogle Scholar
13. Richter, R., Gay, J. G., and Smith, J. R., J. Vac. Sci. Technol. A3, 1498 (1985).CrossRefGoogle Scholar
14. Fu, C. L., Freeman, A. J., and Ogouchi, T., Phys. Rev. Lett. 54, 2700 (1985).Google Scholar
15. Richter, R., Gay, J. G., and Smith, J. R., Phys. Rev. Lett. 54, 2704 (1985).CrossRefGoogle Scholar
16. Fu, C. L. and Freeman, A. J., Phys. Rev. B 35, 925 (1987).Google Scholar
17. Pescia, D., Stampanoni, M., Bona, G. L., Vaterlaus, A., Willis, R. F., and Meier, F., Phys. Rev. Lett. 58, 2126 (1987).CrossRefGoogle Scholar
18. Willis, R. F., Bland, J. A. C., and Schwarzacher, W., J. Appl. Physics. 63, 4051 (1988).Google Scholar
19. Stampanoni, M., Vaterlaus, A., Aeschlimann, M., and Meier, F., J. Appl. Physics. 64, 5321 (1988).Google Scholar
20. Koon, N. C., Jonker, B. T., Volkening, F. A., Krebs, J. J., and Prinz, G. A., Phys. Rev. Lett. 59, 2463 (1987); J. J. Krebs, B. T. Jonker, and G. A. Prinz, J. Appl. Phys. 63, 3467 (1988); F. A. Volkening, B. T. Jonker, J. J. Krebs, N. C. Koon, and G. A. Prinz, J. Appl. Phys. 63, 3869 (1988); B. Heinrich, K. B. Urquhart, J. R. Dutcher, S. T. Purcell, J. F. Cochran, A. S. Arott, D. A. Steigerwald, and W. F. Egelhoff, Jr., J. Appl. Phys. 63, 3863 (1988).Google Scholar