Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T03:28:00.640Z Has data issue: false hasContentIssue false

Temperature Dependence of Silicon-based Thin Film Solar Cells on Their Intrinsic Absorber

Published online by Cambridge University Press:  01 February 2011

Kobsak Sriprapha
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Physical Electronics, 2-12-1, S9-9, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan, +81357342662, +81357342897
Ihsanul Afdi Yunaz
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Physical Electronics, 2-12-1, S9-9, O-okayama, Meguro-ku,, Tokyo, 152-8552, Japan
Shuichi Hiza
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Physical Electronics, 2-12-1, S9-9, O-okayama, Meguro-ku,, Tokyo, 152-8552, Japan
Kun Ho Ahn
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Physical Electronics, 2-12-1, S9-9, O-okayama, Meguro-ku,, Tokyo, 152-8552, Japan
Seung Yeop Myong
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Physical Electronics, 2-12-1, S9-9, O-okayama, Meguro-ku,, Tokyo, 152-8552, Japan
Akira Yamada
Affiliation:
[email protected], Tokyo Institute of Technology, Quantum Nanoelectronics Research Center, 2-12-1, S9-9, O-okayama, Meguro-ku,, Tokyo, 152-8552, Japan
Makoto Konagai
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Physical Electronics, 2-12-1, S9-9, O-okayama, Meguro-ku,, Tokyo, 152-8552, Japan
Get access

Abstract

The temperature dependence of Si-based thin-film single junction solar cells on the phase of the intrinsic absorber is investigated in order to find the optimal absorber at high operating temperatures. For comparison, hydrogenated amorphous, protocrystalline, and microcrystalline silicon solar cells are fabricated by plasma-enhanced chemical vapor deposition and hot-wired CVD techniques. Photo J-V characteristics are measured using a solar simulator at the ambient temperature range of 25-85°C. It is found that the cells with a higher open-circuit voltage usually show lower temperature-dependent behaviors; the protocrystalline silicon solar cells provide the lowest temperature coefficient of efficiency, while the microcrystalline silicon solar cells are highly sensitive to the temperature. Therefore, protocrystalline silicon solar cells are promising for use in high temperature regions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Stiebig, H., Eickhoff, Th., Zimmer, J., Beneking, C. and Wagner, H., Proc. of MRS 420, 855 (1996).Google Scholar
2 Stiebig, H., Zahren, C., Repmann, T., Rech, B. and Brammer, T., Proc. of the 19th EUPVSEC, Paris, France, 1583 (2004).Google Scholar
3 Shima, M., Isomura, M., Wakisaka, K., Murata, K. and Tanaka, M., Solar Energy Material and Solar Cells 85, 167 (2005).Google Scholar
4 Green, M. A., Progress in Photovoltaics: Research and Application 11, 333 (2003).Google Scholar
5 Kameda, M., Sakai, S., Isomura, M., Sayama, K., Hishikawa, Y., Matsumi, S., Haku, H., Wakisaka, K., Tanaka, M., Kiyama, S., Tsuda, S. and Nakano, S., Proc. of the 25th IEEE PVSC, Washington, USA. 10491052 (1996).Google Scholar
6 Akhmad, K., Kitmura, A., Yamamoto, F., Okamoto, H., Takakura, H. and Hamakawa, Y., Solar Energy Materials and Solar Cells 46, 209 (1997).Google Scholar
7 Fukae, K., Lim, C. C., Tamechika, M., Takehara, N., Saito, K., Kajita, I. and Kondo, E., Proc. of the 25th IEEE PVSC, Washington, USA. 12271230 (1996).Google Scholar
8 Kondo, M., Nishio, H., Kurata, S., Hayashi, K., Takenaka, A., Ishikawa, A., Nishimura, K., Yamagishi, H. and Tawada, Y., Solar Energv Materials and Solar Cells 49, 16 (1997).Google Scholar
9 Koh, J., Lee, Y., Fujiwara, H., Wronski, C.R. and Collins, R.W., Appl. Phys. Lett. 73, 1526 (1998).Google Scholar
10 Collins, R. W., Ferlauto, A. S., Ferreira, G. M., Chen, C., Koh, J., Koval, R. J., Lee, Y., Pearce, J. M. and Wronski, C. R., Solar energy Materials & Solar cells 78 143180 (2003).Google Scholar
11 Wronski, C. R., Pearce, J. M., Koval, R. J., Niu, X., Ferlauto, A. S. and Collins, R. W., Proc. of MRS 715, pp. A13.4.112 (2002).Google Scholar
12 Myong, S. Y., Kwon, S. W., Lim, K. S. and Konagai, M., Solar energy Materials & Solar cells 85 133 (2005).Google Scholar
13 Myong, S. Y., Kwon, S. W., Lim, K. S., Kondo, M. and Konagai, M., Appl. Phys. Lett. 88, 083118 (2006).Google Scholar
14 Yunaz, I. A., Sriprapha, K., Hiza, S., Yamada, A. and Konagai, M., Jpn. J. Appl. Phys. (2006) (in press).Google Scholar
15 Carlson, D.E., Lin, G. and Ganguly, G., Proc. of the 28th IEEE PVSC, Alaska, USA. 707712 (2000).Google Scholar