Article contents
Temperature and Polarization Dependence of the Optical Absorption in ZnGeP2 at two Micrometers
Published online by Cambridge University Press: 22 February 2011
Abstract
The temperature and polarization dependence of the optical absorption in ZnGeP2 at two micrometers is reported for the first time over the temperature range from 10K to 300K. The radiation was normally incident upon the face of a cubic sample which contained the c-axis. The absorption of o-rays (E parallel to c), and erays (E perpendicular to c) was determined. It was found that the e-ray absorption coefficient was always significantly larger than the o-ray absorption coefficient and that it had a less significant temperature dependence. For example, the ratio of e-ray to o-ray absorption coefficient was approximately two at 300K and five at 77K. Correspondingly the o-ray absorption coefficients were reduced upon cooling to 77K by a factor of 2.5, while the e-ray absorption coefficients were reduced only slightly (10%-20%). These results indicate that for Type I optical parametric oscillators (OPOs) which use an oray pump beam, that performance may be improved by cooling the crystal.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1994
References
Refernces
- 1
- Cited by