Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T04:04:41.405Z Has data issue: false hasContentIssue false

A Tem Study of Inverse Melting in Nb45Cr55

Published online by Cambridge University Press:  21 February 2011

W. Sinkler
Affiliation:
C. Michaelsen
Affiliation:
Institute for Materials Research, GKSS Forschungszentrum, 21502 Geesthacht, Germany.
Get access

Abstract

Inverse melting of bcc Nb4sCr55 is investigated using transmission electron microscopy, high-resolution TEM and electron diffraction. It is shown that the transformation to the amorphous phase initiates at the bcc grain boundaries. The transformation results in an increase in incoherence, evidenced by a loss of bend contours. Some anisotropy is found in the amorphous phase produced by inverse melting, which is associated in HRTEM with preferentially oriented but discontinuous and distorted fringes. The results are consistent with the production of an amorphous phase by inverse melting.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

1 Yan, Z. H., Klassen, T., Michaelsen, M., Oehring, M., and Bormann, R., Phys. Rev. B 47, 8520 (1993).Google Scholar
2 Michaelsen, C., Oehring, M. and Bormann, R., Appl. Phys. Lett. 65, 318 (1994).Google Scholar
3 Michaelsen, C., Sinkler, W., Pfullmann, Th. and Bormann, R., in preparation, 1995.Google Scholar
4 Sinkler, W. and Bormann, R., in preparation, 1995.Google Scholar
5 Gréer, A. L., J. Less- Comm. Metals 140, 327 (1988).Google Scholar
6 Johnson, W. L., Prog. Mater. Sci. 30, 81 (1986).Google Scholar
7 Blatter, A., Gfeller, J. and von Allmen, M., J. Less- Comm. Metals 140, 317 (1988).Google Scholar
8 Kim, Y.-G. and Lee, J.-Y., J. Non-Cryst. Solids 122, 269 (1990).Google Scholar
9 Sinkler, W. and Luzzi, D. E., MRS Symp. Proc, Vol. 205, Aziz, M.J. et al, Eds. p.209 (1990).Google Scholar
10 Prasad, R., Somekh, R. E. and Greer, A. L., Mater. Sci. Eng. A133, 606 (1991).Google Scholar
11 Ohsaka, K., Trinh, E., Holzer, J. C. and Johnson, W. L., Appl. Phys. Lett. 60, 1079 (1992).Google Scholar
12 Sinkler, W., Michaelsen, C. and Bormann, R., in preparation, 1995.Google Scholar
13 Mori, H., Fujita, H., Tendo, M. and Fujita, M., Scripta Metall. 18, 783 (1984).Google Scholar
14 Luzzi, D. E. and Meshii, M., J. Mater. Res. 1, 617 (1986).Google Scholar
15 Krivanek, O. J., in High-Resolution Transmission Electron Microscopy, Buseck, P.R., Cowley, J.M., and Eyring, L., Editors. Oxford University Press, Oxford, p. 519 (1988).Google Scholar
16 Egami, T. and Waseda, Y., J. Non-Cryst. Sol. 64, 113 (1984).Google Scholar
17 Sinkler, W., Michaelsen, C., Bormann, R., Hannon, A., Spilsbury, D., and Cowlam, N., in preparation, 1995.Google Scholar
18 Hirotsu, Y., Mat. Sci. Eng. A179/A180, 97 (1994).Google Scholar
19 Bursill, L. A., Mallinson, L. G., Elliott, S. R., Thomas, J. M., J. Phys. Chem 85, 3004 (1982).Google Scholar