Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T07:28:52.313Z Has data issue: false hasContentIssue false

TEM Investigation on Microstructural Characteristics in Nanostructured Al-Mg Alloy

Published online by Cambridge University Press:  01 February 2011

Young S. Park
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA 95616
Kyung H. Chung
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA 95616
Nack J. Kim
Affiliation:
Center for Advanced Aerospace Materials, Pohang University of Science & Technology, POSTECH, Pohang 790–784, South Korea
Enrique J. Lavernia
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA 95616
Get access

Abstract

The microstructural evolution in a nanostructured Al-Mg alloy fabricated by cryogenic mechanical alloying (cryomilling), was investigated using transmission electron microscopy (TEM). Nanostructured Al-Mg powders were first synthesized by a mechanical alloying under liquid nitrogen media (cryomilling), and the powders were subsequently degassed, hot isostatically pressed, and extruded into a full dense, bulk form. The results showed that Si containing phases and (Fe,Ni)Al intermetallics existed in as-extruded Al-Mg alloy. In addition, the extrusion temperature has a strong influence on the formation of microstructural anisotropy. A lower extrusion temperature yields a microstructure that is more anisotropic relative to that present at the higher extrusion temperature. More specifically, at the lower temperature, the nano-sized Al grains have a tendency to rotate towards the <111> direction, along the extrusion direction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Suryanarayana, C., Progr. Mater. Sci. 46, 3 (2001).Google Scholar
2. Kim, S. H., Kim, D. H., Kim, N. J., Mater. Sci. Eng. A226 1030 (1997).Google Scholar
3. Khonsari, F. A., Kurdi, J., Tatoulian, M., Amouroux, J., Surf. Coat. Tech. 142 437 (2001).Google Scholar
4. Keller, S., Waltereit, P., Cantu, P., Mishra, U. K., Speck, J. S., DenBaars, S.P., Opt. Mater. 23 187 (2003).Google Scholar
5. Alexandrov, I. V., Zhang, K., Kilmametov, A. R., Lu, K., Valiev, R. Z., Mater. Sci. Eng. A234 331 (1997).Google Scholar
6. Ko, Y. G., Jung, W. S., Shin, D. H., Lee, C. S., Scripta Mater. 48 197 (2003).Google Scholar
7. El-Eskandarany, M. S., Mechanical Alloying, Norwich, (Noyes Publications, 2001) p. 1.Google Scholar
8. Tellkamp, V. L., Melmed, A., Lavernia, E. J., Metall. Mater. Trans. 32 2335 (2001).Google Scholar
9. Zhou, F., Liao, X. Z., Zhu, Y. T., Dallek, S., Lavernia, E. J., Acta. Mater. 51 2777 (2003).Google Scholar
10. Goujon, C., Goeuriot, P., Delcroix, P., Le Caër, G., Jounal of Alloys and Compounds 315 276 (2001).Google Scholar
11. Han, B.Q., Lee, Z., Nutt, S.R., Lavernia, E.J., and Mohamed, F.A., Metall. Mater. Trans. 34A 603 (2003)Google Scholar
12. Zhou, F., Rodriguez, R., Lavernia, E.J., Mater. Sci. Forum, 409 386 (2002).Google Scholar
13. Humphreys, F. J., Hatherly, M., Recrystallization and related annealing phenomena, Oxford (Pergamom Press, 1995) p. 127.Google Scholar
14. Haslam, A. J., Phillpot, S. R., Wolf, D., Moldovan, D., Gleiter, H., Mater. Sci. Eng. A318 293 (2001).Google Scholar
15. Chung, K. H., Lee, J., Rodriguez, R., Lavernia, E. J.. Metall. Mater. Trans. A33 125 (2002).Google Scholar
16. Lee, J., Zhou, F., Chung, K. H., Kim, N. J., Lavernia, E. J., Metall. Mater. Trans. A32 3109 (2001).Google Scholar
17. Mecking, H., Texture in metals, Orlando; (Academic Press, 1985) p. 1.Google Scholar
18. Dieter, G. E.. Mechanical Metallurgy, New York, (McGraw-Hill Book Company 1986) p. 237.Google Scholar