Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:33:03.087Z Has data issue: false hasContentIssue false

Ta-Si-N and Si3N4 Encapsulants for InP

Published online by Cambridge University Press:  25 February 2011

J. S. Reid
Affiliation:
California Institute of Technology, Pasadena, CA 91125
R. P. Ruiz
Affiliation:
Jet Propulsion Laboratory, Pasadena, CA 91109
E. Kolawa
Affiliation:
California Institute of Technology, Pasadena, CA 91125
J. S. Chen
Affiliation:
California Institute of Technology, Pasadena, CA 91125
J. Madok
Affiliation:
University of California, Los Angeles, CA 90024
M -A. Nicolet
Affiliation:
California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

Thin films of sputtered, amorphous Ta36Si14N50 (a metallic conductor) and Si3N4 (an insulator) were evaluated as encapsulants for (100)-oriented InP substrates. Thicknesses of both films were approximately 100 nm. During a 15 min annealing in Ar, liberated phosphorus was gettered by a <Si>ISiO2ITa(100 nm) collector placed face-to-face on encapsulated or non-encapsulated InP. The stability of the InP with the encapsulant was characterized by backscattering spectrometry, scanning electron microscopy, and x-ray diffraction. As measured by 4He++ backscattering spectrometry, detectable amounts of phosphorus do not arise in the Ta collectors for the Ta-Si-N and Si3N4 encapsulation schemes until 650 and 700°C, respectively. Failure of the Ta36Si14N50 film is catastrophic at 700°C whereas the Si3N4 film degrades locally commencing at 600°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Farrow, R. F. C., J. Phys. D., 7, 2436 (1974).CrossRefGoogle Scholar
[2] Oberstar, J. D., Streetman, B. G., Baker, J. E., Williams, P., J. ElectroChem. Soc., 1312 and 1320 (1982).CrossRefGoogle Scholar
[3] Biedenbender, M. D. and Kapoor, V. J., J. ElectroChem. Soc., 137, 1537 (1990).CrossRefGoogle Scholar
[4] Oberstar, J. D., Streetman, B. G., Baker, J. E., Finnegan, N. L., et al., Thin Solid Films, 94, 149 and 161 (1982).CrossRefGoogle Scholar
[5] Farley, C. W., Kim, T. S., Streetman, B. G., Lareau, R. T., Williams, P., Thin Solid Films, 146, 221 (1987).CrossRefGoogle Scholar
[6] Gleason, K. R., Dietrich, H. B., Henry, R. L., Cohen, E. D., and Bark, M. L., Appl. Phys. Lett., 32, 578 (1978).CrossRefGoogle Scholar
[7] Nishioka, T. and Ohmachi, Y., J. Appl. Phys., 51, 5789 (1981).CrossRefGoogle Scholar
[8] Oberstar, J. D., Streetman, B. G., Samman, E. A., Thin Solid Films, 81, 347 (1981).CrossRefGoogle Scholar
[9] Donnelly, J. P. and Hurwitz, C. E., Solid-State Electronics, 23, 943 (1980).CrossRefGoogle Scholar
[10] Donnelly, J. P. and Hurwitz, C. E., Appl. Phys. Lett., 31, 418 (1977).CrossRefGoogle Scholar
[11] Singh, S., Bonner, W. A., Camlibel, I., Grodkiecz, W. H., et al., Appl. Phys. Lett., 38, 349 (1981).CrossRefGoogle Scholar
[12] Kasahara, J., Gibbons, J. F., Magee, T. J., and Peng, J., J. Appl. Phys., 51, 4119 (1980).CrossRefGoogle Scholar
[13] Wilkie, J. H. and Sealy, B. J., Thin Solid Films, 162, 49 (1988).CrossRefGoogle Scholar
[14] del Alamo, J. A. and Mizutani, Takashi, J. Appl Phys., 62, 3456 (1987).CrossRefGoogle Scholar
[15] Bhattacharya, P. K., Goodman, W. H., and Rao, M. V., J. Appl. Phys., 55, 509 (1984).CrossRefGoogle Scholar
[16] Pande, K. P., Nair, V. R. K., and Aina, O., Appl. Phys. Lett., 45, 532 (1984).CrossRefGoogle Scholar
[17] Dobabalapur, A., Farley, C. W., Lester, S. D., Kim, T. S., and Streetman, B. G., J. Electronic Materials, 16, 283 (1987).CrossRefGoogle Scholar
[18] Davies, D. E., Potter, W. D., and Lorenzo, J. P., J. ElectroChem. Soc, 125, 1845 (1978).CrossRefGoogle Scholar
[19] Liau, Z. L., Appl. Phys. Lett., 58, 1869 (1991).CrossRefGoogle Scholar
[20] Molarius, J. M., Kolawa, E., Morishita, K., and Nicolet, M -A., J. Electrochem Soc, 138, 834 (1991).CrossRefGoogle Scholar
[21] Chen, J. S., Kolawa, E., Garland, C. M., Nicolet, M -A., J. Appl. Phys., 70, 1369 (1991).Google Scholar
[22] Kolawa, E., Chen, J. S., Reid, J. S., Pokela, P. J., and Nicolet, M -A., J. Appl. Phys., 70, 1369 (1991).CrossRefGoogle Scholar
[23] Kolawa, E., Molarius, J. M., Nieh, C. W., Nicolet, M-A., J. Vac. Sci. A., 8, 3006 (1990).CrossRefGoogle Scholar
[24] Binary Alloy Phase Diagrams, Edited by Massalski, T. B., Bennett, L. H., Murray, J. L., Baker, H. (ASM International, Metals Park, OH, 1991).Google Scholar
[25] Boiler, H. and Parme, E., Acta Cry st., 16, 1095 (1963).CrossRefGoogle Scholar
[26] Notten, P. H. L., J. ElectroChem. Soc., 138, 243 (1991).CrossRefGoogle Scholar