Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:49:52.946Z Has data issue: false hasContentIssue false

Tailoring the Optical Properties of Si Nanocrystals In SiO2: Materials Issues And Nanocrystal Laser Perspectives

Published online by Cambridge University Press:  10 February 2011

M. L. Brongersma
Affiliation:
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands; [email protected]; http://www.amolf.nl/departments/optoelec
K. S. MIN
Affiliation:
Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125
E. Boer
Affiliation:
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands; [email protected]; http://www.amolf.nl/departments/optoelec
T. Tambo
Affiliation:
Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125
A. Polman
Affiliation:
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands; [email protected]; http://www.amolf.nl/departments/optoelec
H. A. Atwater
Affiliation:
Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

Si nanocrystals (diameter 2 – 5 nm) were formed by 35 keV Si+ implantation at a fluence of 6×1016 Si/cm2 into a 100 nm thick thermally grown SiO2 film on Si (100), followed by thermal annealing at 1100 °C for 10 min. The nanocrystals show a broad photoluminescence spectrum, peaking at 880 nm, attributed to the recombination of quantum confined excitons. Rutherford backscattering spectrometry and transmission electron microscopy show that annealing these samples in flowing O2 at 1000 °C for times up to 30 min. results in oxidation of the Si nanocrystals, first close to the SiO2 film surface and later at greater depths. Upon oxidation for 30 min. the photoluminescence peak wavelength blue-shifts by more than 200 nm. This blueshift is attributed to a quantum size effect in which a reduction of the average nanocrystal size leads to emission at shorter wavelengths. The fabrication of a laser based on SiO2 waveguides doped with Si nanocrystals seems possible, if the nanocrystal size distribution can be narrowed down into the percent range.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990)Google Scholar
2 Collins, R.W., Fauchet, P.M., Shimizu, I., Vial, J.C., Shimada, T., and, Alivisatos, A.P., MRS Symp. Proc. 452 (1996)Google Scholar
3 Vial, J.C. and Derrien, J., Porous Si science and technology, Springer-Verlag, Berlin (1995)Google Scholar
4 Kanemitsu, Y., Phys. Rep. 263, No 1 (1995)Google Scholar
5 Shimizu-Iwayama, T., Ohshima, M., Niimi, T., Nakao, S., Saitoh, K., Fujita, T., and Itoh, N., J. Phys. Condens. Matter 5, L375 (1993)Google Scholar
6 Min, K.S., Shcheglov, K.V., Yang, C.M., Atwater, H.A., Brongersma, M.L., and Polman, A., Appl. Phys. Lett. 69, 2033 (1996)Google Scholar
7 Komoda, T., Kelly, J., Cristiano, F., Nejim, A., Hemment, P.L.F., Homewood, K.P., Gwilliam, R, Mynard, J.E., Sealy, B. J., Nucl. Instrum. Methods Phys. Res. B 96, 387 (1995)Google Scholar
8 Hybertsen, M., Phys. Rev. Lett. 72, 1514 (1994)Google Scholar
9 Brüesch, P., Stockmeier, Th., Stucki, F., and Buffat, P.A., J. Appl. Phys. 73, 7666 (1993)Google Scholar
10 Lannoo, M., Delerue, C., Allan, G., and Martin, E., Mat. Res. Symp. Proc. 358, 13 (1995)Google Scholar
11 Dumke, W.P., Phys. Rev. Lett. 127, 1559 (1962)Google Scholar