Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T12:01:25.319Z Has data issue: false hasContentIssue false

Tailoring Sol-Gel Transition Processes for the Design of Novel Shape Metal Oxide Materials

Published online by Cambridge University Press:  01 February 2011

Martin Jarvekulg
Affiliation:
[email protected], University of Tartu, Institute of Physics, Tartu, Estonia
Raul Välbe
Affiliation:
[email protected], University of Tartu, Institute of Physics, Tartu, Estonia
Kathriin Utt
Affiliation:
[email protected], University of Tartu, Institute of Physics, Tartu, Estonia
Martin Timusk
Affiliation:
[email protected], University of Tartu, Institute of Physics, Tartu, Estonia
Tanel Tätte
Affiliation:
[email protected], University of Tartu, Institute of Physics, Tartu, Estonia
Get access

Abstract

In present paper we describe some unconventional adaptions of sol-gel method. Controlled sol-gel transformation processes of metal alkoxide based systems can lead to various novel shapes of metal alkoxide materials. Formation of different structures like tubular microstructures by gel sheet rolling, nano- and microfibres by direct drawing, as well as microtubes of metal oxides and gel dispersed liquid crystal materials are described. Different aspects of sol-gel processes leading to the formation of all of these structures are thereby discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Livage, J. Henry, M. and Sanchez, C. Prog. Solid State Chem. 18 (1988.Google Scholar
2 Kessler, V. G. J. Sol-Gel Sci. Technol. 51(3) (2009.Google Scholar
3 Kanarjov, P. Reedo, V. Acik, I. Oja, Matisen, L. Vorobjov, A. Kiisk, V. Krunks, M. and Sildos, I., Phys. Solid State 50(9) (2008.Google Scholar
4 Tatte, T. Paalo, M. Kisand, V. Reedo, V. Kartushinsky, A. Saal, K. Maeorg, U. Lohmus, A. and Kink, I. Nanotechnol. 18(12) (2007.Google Scholar
5 Kisand, V. Shulga, J. Taette, T. Visk, U. Natali, M. Mistura, G. Paalo, M. Lobjakas, M and Kink, I., Mat. Sci. Eng. B 137 (1-3) (2007.Google Scholar
6 Saal, K. Plaado, M. Kink, I. Kurg, A. Kiisk, V. Kozevnikova, J. Maeorg, U. Rinken, A. Sildos, I., Tatte, T. and Lohmus, A. in Biological and Bio-Inspired Materials and Devices, edited by Sandhage, K.H. Yang, S. Douglas, T. A.Parker, R. and DiMasi, E. (Mater. Res. Soc. Symp. Proc. 873E, Warrendale, PA, 2005), K 9.3.Google Scholar
7 Reedo, V. Jarvekulg, M. Lohmus, A. and Maeorg, U. Phys. Status Solidi A 205(6) (2008.Google Scholar
8 Sakka, S. and Yoko, T. J. Non-Cryst. Solids 147&148 (1992.Google Scholar
9 Ullmann's Fibers Vol 1 (Wiley-VCH, Verlag GmbH&Co KgaA, Weinheim, 2008).Google Scholar
10 Ondarçuhu, T. and Joachim, C. Europhys. Lett. 42(2) (1998.Google Scholar
11 Li, D. Xia, Y. Adv. Mater. 16 (2004.Google Scholar
12 Ajayan, P. M. Schadler, L. S. and Braun, P. V. (2003 Nanocomposite Science and Technology (Wiley-VCH, Weinheim 2008).Google Scholar
13.Tätte, T., Kolesnikova, A.L. Hussainov, M. Talviste, R. Lõhmus, R., Romanov, A. E. Hussainova, I., Part, M. and Lõhmus, A., Nanosci, J.. Nanotechnol. 10 (2010.Google Scholar
14 Levy, D. Serrano, A. Oton, J. M. J. Sol-Gel Sci. Technol. 2(1/2/3) 1994.Google Scholar
15 Timusk, M. Jrvekülg, M., Lõhmus, R., Kink, I. and Saal, K. Mater. Sci. Eng. B 172(1) (2010.Google Scholar