Article contents
Tactile Sensing Using Contact Resistance in MWNT/PDMS Composites
Published online by Cambridge University Press: 21 February 2012
Abstract
A carbon nanotube polymer composite has been used to develop a flexible multi-touch tactile sensor device. Rather than employing the inherent bulk piezoresistive properties of the composite, the contact resistance between polymer and electrode was exploited to achieve finger pressure measurement with fast response. We have synthesized a series of multi-walled nanotube (MWNT) silicone composites to test the feasibility of a force sensor based on the change in surface contact resistance as a function of applied force. A single layer MWNT/polydimethyl-siloxane (PDMS) composite in the range of 1.5-3.0 % w/w nanotubes was employed as a force sensor material in an array of electrodes. It was determined that sensors based on these materials are viable as tactile sensing systems for finger-touch forces in the range of 1-100 N.
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 1410: Symposium DD – Transport Properties in Polymer Nanocomposites II , 2012 , mrsf11-1410-dd04-29
- Copyright
- Copyright © Materials Research Society 2012
References
REFERENCES
- 1
- Cited by