Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T13:12:06.654Z Has data issue: false hasContentIssue false

A Systematic Study of Metal-assisted Chemical Etching Parameters for Well-Ordered Silicon Nanowire Array Fabrication

Published online by Cambridge University Press:  07 February 2012

Arif S. Alagoz
Affiliation:
Department of Applied Science, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
Tansel Karabacak
Affiliation:
Department of Applied Science, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
Get access

Abstract

Metal-assisted chemical etching is a simple and low-cost silicon nanowire fabrication method which allows control of nanowire diameter, length, shape and orientation. In this work, we fabricated well-ordered silicon nanowire array by patterning gold thin film by nanosphere lithography and etching single crystalline silicon wafer by metal-assisted chemical etching technique. We investigated relation between etched solution concentration and nanowire morphology, wafer crystal orientation, etching rate. This well-ordered silicon nanowires arrays have the potential applications in many fields but especially next generation energy related applications from solar cells to lithium-ion batteries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Huang, Z., Geyer, N., Werner, P., de Boor, J., and Goesele, U., Adv Mater 23, 2 (2011).Google Scholar
2. Peng, K. Q., Xu, Y., Wu, Y., Yan, Y. J., Lee, S. T., and Zhu, J., Small 1, 11 (2005).Google Scholar
3. Peng, K. Q., Xu, Y., Wu, Y., Yan, Y. J., Lee, S. T., and Zhu, J., Small 1, 11 (2005).Google Scholar
4. Sivakov, V., Andrae, G., Gawlik, A., Berger, A., Plentz, J., Falk, F., and Christiansen, S. H., Nano Letters 9, 4 (2009).Google Scholar
5. Hochbaum, A. I., Chen, R., Delgado, R. D., Liang, W., Garnett, E. C., Najarian, M., Majumdar, A., and Yang, P., Nature 451, 7175 (2008).Google Scholar
6. Peng, K., Jie, J., Zhang, W., and Lee, S., Appl. Phys. Lett. 93, 3 (2008).Google Scholar
7. Qiu, M. C., Yang, L. W., Qi, X., Li, J., and Zhong, J. X., Acs Applied Materials & Interfaces 2, 12 (2010).Google Scholar
8. Xiu, Y., Zhu, L., Hess, D. W., and Wong, C. P., Nano Letters 7, 11 (2007).Google Scholar
9. Peng, K., Lu, A., Zhang, R., and Lee, S., Advanced Functional Materials 18, 19 (2008).Google Scholar
10. Ozdemir, B., Kulakci, M., Turan, R., and Unalan, H. E., Nanotechnology 22, 15 (2011).Google Scholar
11. Peng, K., Zhang, M., Lu, A., Wong, N., Zhang, R., and Lee, S., Appl. Phys. Lett. 90, 16 (2007).Google Scholar
12. Prevo, B. G., and Velev, O. D., Langmuir 20, 6 (2004).Google Scholar
13. Chartier, C., Bastide, S., and Levy-Clement, C., Electrochim. Acta 53, 17 (2008).Google Scholar