Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T18:50:45.233Z Has data issue: false hasContentIssue false

Systematic Examination of Boron Diffusion Phenomenon in HfSiON High-k Gate Insulator

Published online by Cambridge University Press:  28 July 2011

Masato Koyama
Affiliation:
Advanced LSI Technology Laboratory, Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522, Japan
Tsunehiro Ino
Affiliation:
Advanced LSI Technology Laboratory, Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522, Japan
Yuuichi Kamimuta
Affiliation:
Advanced LSI Technology Laboratory, Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522, Japan
Masamichi Suzuki
Affiliation:
Advanced LSI Technology Laboratory, Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522, Japan
Akra Nishiyama
Affiliation:
Advanced LSI Technology Laboratory, Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522, Japan
Chie Hongo
Affiliation:
Advanced Electron Devices Laboratory, Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522, Japan
Get access

Abstract

In this paper, boron diffusivities in HfSiON high-k gate dielectric films are systematically investigated for a wide range of the film composition. Boron diffusivities in HfSiON (1000°C) change from 3X10−17cm2/sec to 3X10−15cm2/sec according to the change in the chemical composition of the films. These diffusivity values are higher than that in SiON but lower than that in HfO2. We found that higher Hf/(Hf+Si) results in great increase of diffusivities. On the other hand, higher nitrogen concentration in the film leads to the reduction in diffusivity, in the case of the same Hf/(Hf+Si). In addition, crystallization of HfSiON with the same chemical composition gives rise to an anomalous increase in diffusivities, indicating that the micro-crystallized film structure of HfSiON critically affects the microscopic mechanism of boron diffusion in this material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, J. H., Koh, K., Lee, N. I., Cho, M. H., Kim, Y. K., Jeon, J. S., Cho, K. H., Shin, H. S., Kim, M. H., Fujihara, K., Kang, H. K. and Moon, J. T., Tech. Dig. Int. Electron Devices Meet., 2000, p645.Google Scholar
2. Suzuki, K, Tashiro, H., Morisaki, Y. and Sugita, Y., IEEE Trans. Electron Devices 50, p1550 (2003).Google Scholar
3. Lee, C., Choi, J., Cho, M., Park, J., Hwang, C. S., Kim, H. J., Jeong, J. and Lee, W., Appl. Phys. Lett. 83, p1403 (2003).Google Scholar
4. Koyama, M., Kaneko, A., Ino, T., Koike, M., Kamata, Y., Iijima, R., Kamimuta, Y., Takashima, A., Suzuki, M., Hongo, C., Inumiya, S., Takayanagi, M. and Nishiyama, A, Tech. Dig. Int. Electron Devices Meet., 2002, p849.Google Scholar
5. Quevedo-Lopez, M. A. I-Bouanani, M. E, Kim, M. J., Gnade, B. E., Wallace, R. M., Visokay, M. R., LiFatou, A., Chambers, J. J. and Colombo, L., Appl. Phys. Lett. 82, 4669 (2003).Google Scholar
6. Aoyama, T., Suzuki, K., Tashiro, H., Toda, Y., Yamazaki, T., Takasaki, K. and Ito, T., J. Appl. Phys. 77, p417 (1995).Google Scholar
7. Liu, C. -L., Jiang, Z. X., Hegde, R. I., Sieloff, D. D., Rai, R. S., Gilmer, D. C., Hobbs, C. C. and Lu, S., Appl. Phys. Lett. 81, p1441 (2002).Google Scholar