Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:14:25.708Z Has data issue: false hasContentIssue false

Synthetic, Characterization and Decomposition Studies of Indium Sulfide Precursors

Published online by Cambridge University Press:  10 February 2011

Rodney D. Schluter
Affiliation:
School of Chemistry and Biochemistry, School of Materials Science and Engineering, and the Molecular Design Institute, Georgia Institute of Technology, Atlanta, GA 30332-0400
Henry A. Luten
Affiliation:
School of Chemistry and Biochemistry, School of Materials Science and Engineering, and the Molecular Design Institute, Georgia Institute of Technology, Atlanta, GA 30332-0400
William S. Rees Jr.
Affiliation:
School of Chemistry and Biochemistry, School of Materials Science and Engineering, and the Molecular Design Institute, Georgia Institute of Technology, Atlanta, GA 30332-0400
Get access

Abstract

The synthesis, characterization and decomposition of several indium thiolates containing the bulky substituted aryl ligand 2,4,6-i-Pr 3C6H2 (Ar′) or the internally chelating ligands 2-CH3O,5-CH3C6H3 (Ar″) and o-C6H4CH2N(CH3)2 (Ar"‘) are described. Two synthetic methods have been utilized: metathesis reactions between lithium thiolates and the appropriate metal halides and the addition of elemental metal to diaryl disulfides. The thermal decomposition of each indium precursor results in the formation of 1n2S3, based on thermogravimetric data. The homoleptic compound In(SAr′)3 can be isolated as a yellow oil. This liquid precursor has been derivatized by the reversible formation of acetonitrile and tetrahydrofuran adducts. Although, the molecule exists as a monomer in both adducts, the coordination number of the metal and he orientation of the ligands are markedly different. The internally chelating In(SAr″)3 and In(SAr.″′)3 adopt contrasting dimeric and monomeric structures respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cowley, A. H. and Jones, R. A., Angew. Chem. Int. Ed. Engl. 28, 1208 (1989).Google Scholar
2. (a) Rees, W. S., Jr., Anderson, T. J., Green, D. M. and Bretschneider, E., Mater. Res. Soc. Proc.242, 281 (1992); (b) W. S. Rees, Jr., D. M. Green and W. Hesse, Polyhedron 11, 1667 (1992); (c) W. S. Rees, Jr., D. M. Green, T. J. Anderson, E. Bretschneider, B. Pathangey, C. Park and J. Kim, J. Electron. Mater. 21, 361 (1992); (d) W. S. Rees, Jr., D. M. Green and W. Hesse, Mater. Res. Soc. Proc. 282, 63 (1993).Google Scholar
3. Mclnnes, A. N., Power, M. B. and Barron, A. R., Chem. Mater. 4, 11 (1992).Google Scholar
4. (a) Kräuter, G., Neumüller, B., Goedken, V. and Rees, W. S., Jr.,Chem. Mater. 7, (1995); (b) G. Kräuter and W. S. Rees, Jr., J. Mat. Chem. 5, 1265 (1995); (c) G. Krauter, P. Favreau and W. S. Rees, Jr., Chem. Mater. 6, 543 (1994); (d) W. S. Rees, Jr. and G. KrAuter, Phosphorus, Sulfur, and Silicon, 87, 219 (1994); (e) W. S. Rees, Jr. and G. Krauter, Mat. Res. Soc. Symp. Proc. 327, 3 (1994); (f) G. Krauter, V. L. Goedken, B. Neumuiller and W. S. Rees, Jr., Mat. Res. Soc. Symp. Proc. 327, 35 (1994); (g) W. S. Rees, Jr. and G. Krauter, Phosphorus, Sulfur, and Silicon, 87, 219 (1994).Google Scholar
5. (a) Uwai, K. K., Nakagome, H. and Takahei, K., Appl. Phys. Lett. 51, 1010 (1987); (b) K. K. Uwai, H. Nakagome and K. Takahei, J. Crystal Growth 93, 583 (1988); (c) J. Weber, M. Moser, A. Stapor, F. Scholz, G. Bohnert, A. Hangleiter, A. Hammel, D. Wiedmann and J. Weidlein, J. Crystal Growth 104, 815 (1990).Google Scholar
6. (a) Cetinkaya, B., Hitchcock, P. B., Lappert, M. F. and Smith, R. G., J. Chem. Soc., Chem. Commun. 932 (1992); (b) K. Mashima, Y. Nakayama, H. Fukumoto, N. Kanehisa, Y. Kai and A. Nakamura, J. Chem. Soc., Chem. Commun. 2523 (1994); (c) J. Lee, M. Brewer, M. Berardini and J. G. Brennan, Inorg. Chem. 34, 3215 (1995).Google Scholar
7. Kumar, R., Mabrouk, H. E. and Tuck, D. G., J. Chem. Soc., Dalton Trans. 1045 (1988).Google Scholar
8. Bondi, A., J. Phys. Chem. 68, 441 (1964).Google Scholar