Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T10:38:16.247Z Has data issue: false hasContentIssue false

Synthesis-Morphology-Mechanical Properties Relationships Of Polymer-Silica Nanocomposite Hybrid Materials

Published online by Cambridge University Press:  10 February 2011

P. Hajji
Affiliation:
GEMPPM, UMR-CNRS 5510, INSA de Lyon, 69621 Villeurbanne cedex, France. LMM, UMR-CNRS 5627, INSA de Lyon, 69621 Villeurbanne cedex France.
L. David
Affiliation:
GEMPPM, UMR-CNRS 5510, INSA de Lyon, 69621 Villeurbanne cedex, France.
J. F. Gerard
Affiliation:
LMM, UMR-CNRS 5627, INSA de Lyon, 69621 Villeurbanne cedex France.
H. Kaddami
Affiliation:
LMM, UMR-CNRS 5627, INSA de Lyon, 69621 Villeurbanne cedex France. Université Cadi Ayyad, F.S.T., Département de Chimie, BP 618, Marrakech 4000, Maroc.
J. P. Pascault
Affiliation:
LMM, UMR-CNRS 5627, INSA de Lyon, 69621 Villeurbanne cedex France.
G. Vigier
Affiliation:
GEMPPM, UMR-CNRS 5510, INSA de Lyon, 69621 Villeurbanne cedex, France.
Get access

Abstract

Two types of polymer-silica nanocomposites have been prepared by undergoing free radical polymerization of 2-hydroxyethyl methacrylate (HEMA) either in the presence of HEMA-functionalized SiO2 nanoparticles (Type 1) or during the simultaneous in situ growing of the silica phase through the acid-catalyzed sol-gel polymerization of tetraethoxysilane (TEOS) (Type 2). Relationships between synthesis, morphology and mechanical properties are discussed mainly on the basis of solid state 29Si nuclear magnetic resonance spectroscopy (NMR), transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), and dynamic mechanical analysis (DMA).

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Landry, C. J. T., Coltrain, B. K., Landry, M. R., Fitzgerald, J. J., and Long, V. K., Macromolecules 26, p. 37023712 (1993).10.1021/ma00066a032Google Scholar
2. Novak, B. M. and Ellsworth, M. W., Materials Science and Engineering A162, p. 257264 (1993).10.1016/0921-5093(90)90051-4Google Scholar
3. Sanchez, C. and Ribot, F., New J. Chem. 18, No.10, p. 10071047 (1994).Google Scholar
4. Girard-Reydet, E., Lam, T. M., and Pascault, J. P.,, Makromol. Chem. Phys. 195, p. 149158 (1994).10.1002/macp.1994.021950112Google Scholar
5. Bourgeat-Lami, E., Espiard, P., Guyot, A., Gauthier, C., David, L., and Vigier, G., Die Angewandte Makromolekulare Chemie 242, p. 105122 (1996).10.1002/apmc.1996.052420107Google Scholar
6. Mark, J. E., Heterogeneous chemistry reviews 3, p. 307326 (1996).10.1002/(SICI)1234-985X(199612)3:4<307::AID-HCR64>3.0.CO;2-33.0.CO;2-3>Google Scholar
7. Beaucage, C. and Schaefer, D. W., J. Non-Cryst. Solids 173, p. 797 (1994).10.1016/0022-3093(94)90581-9Google Scholar
8. Etienne, S. and David, L., Mechanical Spectroscopy in Materials Science, L. B. Magalas, Chapman, Amsterdam, in Press.Google Scholar
9. Rodrigues, D. E., Brennan, A. B., Betrabet, C., Wang, B., and Wilkes, G. L., Chem. Mater. 4, No. 6, p. 14371446 (1992).10.1021/cm00024a055Google Scholar
10. Brinker, C. J., J. Non-Cryst. Solids 100, p. 3150 (1988).10.1016/0022-3093(88)90005-1Google Scholar
11. Hajji, P., Ferry, L., Labour, T., and Vigier, G., submitted to J. Appl. Polym. Sci, (1999).Google Scholar