Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:41:22.111Z Has data issue: false hasContentIssue false

Synthesis, Structure and Dielectric Properties of Na2SnTeO6

Published online by Cambridge University Press:  16 February 2011

J.-H. Park
Affiliation:
CHiPR, Geosciences, SUNY, Stony Brook, NY 11794-2100 Dept. of Chemistry and Geosciences, SUNY, Stony Brook, NY 11794-2100
P.M. Woodward
Affiliation:
Dept. of Chemistry, The Ohio State University, Columbus, OH 43210-1185
J.B. Parise
Affiliation:
CHiPR, Geosciences, SUNY, Stony Brook, NY 11794-2100 Dept. of Chemistry and Geosciences, SUNY, Stony Brook, NY 11794-2100 Geosciences, SUNY, Stony Brook, NY 11794-2100
I. Lubomirsky
Affiliation:
Dept. of Electrical Engineering (IV), UCLA, Los Angeles, CA,90024
O. Stafsudd
Affiliation:
Dept. of Electrical Engineering (IV), UCLA, Los Angeles, CA,90024
Get access

Abstract

A new perovskite was recovered from the high pressure-high temperature treatment of the α-TlSbO3 form of Na2SnTeO6 at 7 GPa and 950 °C for 30 minutes. Synchrotron x-ray powder diffraction data show the space group is P21/n with a=5.40361 (5), b=5.46152(5), c=7.69288(7) Å and ß=90.034(3)°. Using disk samples of both polymorphs, the dielectric properties were measured as a function of temperature. At ambient conditions, the perovskite form has a more than 1.5 fold enhancement in dielectric constant compared to the α-TlSbO3 form while the molar volume and the molecular polarizability decrease.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kawashima, S., Nishida, N., Ueda, I. and Ouchi, H., J. Am. Ceram. Soc. 66, 421 (1983);Google Scholar
Nomura, S., Ferroelec. 49, 61 (1983).Google Scholar
2. The CM equation is strictly valid only for cubic symmetry compounds, but has been shown to be approximately valid for a number of noncubic crystals; Roberts, R., Phys. Rev. 81, 865 (1951);Google Scholar
Lasaga, A. C. and Cygan, R. T., Am. Mineral. 67, 328 (1982).Google Scholar
3. Chai, L. and Davies, P. K., J. Am. Ceram. Soc. 80, p. 3193 (1997);Google Scholar
Davies, P. K., Tong, J. and Negas, T., J. Am. Ceram. Soc., 80, 1727 (1997).Google Scholar
4. Hazen, R. M. and Navrotsky, A., Am. Mineral. 81, 1021 (1996);Google Scholar
Chen, J., Li, R., Parise, J. B. and Weidner, D. J., Am. Mineral. 81, 1519 (1996);Google Scholar
Leinenweber, K. and Parise, J. B., Am. Mineral. 82, 475 (1997);Google Scholar
Leinenweber, K. and Parise, J. B. Solid, J. State Chem. 114, 277 (1995).Google Scholar
5. Woodward, P. M., Sleight, A. W., Du, L-S. and Grey, C. P., submitted (1998).Google Scholar
6. Park, J.-H., Woodward, P. M. and Parise, J. B., Chem. Mater. 10, 3092 (1998).Google Scholar
7. Rietveld, H. M., J. Appl. Cryst. 2, 65 (1969).Google Scholar
8. Larson, A. C. and Von Dreele, R. B., General Structure Analysis System, Los Alamos National Laboratory, Los Alamos, NM, 1994.Google Scholar
9. Groen, W. A., van Berkel, F. P. F., Ijdo, D. J. W., Acta Crystallogr., C42, 1472 (1986).Google Scholar
10. Anderson, M. T., Greenwood, K. B., Taylor, G. A and Poeppelmeier, K. R., Prog. Solid State 143 Chem. 22, 197 (1993).Google Scholar
11. Glazer, A. M., Acta Crystallogr. B28, 3384 (1972);Google Scholar
Woodward, P. M., Acta Crystallogr. B53, 32 (1997).Google Scholar
12. Park, J.-H., Woodward, P. M., Parise, J. B., Reeder, R. J., Lubomirsky, I. and Stafsudd, O., Chem. Mater., in press (1998).Google Scholar
13. Park, J.-H., Woodward, P. M., Parise, J. B., Lubomirsky, I. and Stafsudd, O., submitted (1998).Google Scholar
14. Shannon, R. D., J. Appl. Phys. 73, 348 (1993).Google Scholar
15. Parise, J. B. and Chen, J., Eur. J. Sol. State Inorg. Chem. 34, 809 (1997);Google Scholar
Parise, J. B., Weidner, D. J., Chen, J., Liebermann, R. C. and Chen, G., Ann. Rev. in Mat. Sci. 28, 349 (1998).Google Scholar