Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T16:27:59.964Z Has data issue: false hasContentIssue false

Synthesis, Optical Properties, and Microstructure of Semiconductor Nanocrystals Formed by Ion Implantation

Published online by Cambridge University Press:  15 February 2011

J. D. Budai
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831–6030
C. W. White
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831–6030
S. P. Withrow
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831–6030
R. A. Zuhr
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831–6030
J. G. Zhu
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831–6030
Get access

Abstract

High-dose ion implantation, followed by annealing, has been shown to provide a versatile technique for creating semiconductor nanocrystals encapsulated in the surface region of a substrate material. We have successfully formed nanocrystalline precipitates from groups IV (Si, Ge, SiGe), III-V (GaAs, InAs, GaP, InP, GaN), and II-VI (CdS, CdSe, CdSxSe1x, CdTe, ZnS, ZnSe) in fused silica, Al2O3 and Si substrates. Representative examples will be presented in order to illustrate the synthesis, microstructure, and optical properties of the nanostructured composite systems. The optical spectra reveal blue-shifts in good agreement with theoretical estimates of size-dependent quantum-confinement energies of electrons and holes. When formed in crystalline substrates, the nanocrystal lattice structure and orientation can be reproducibly controlled by adjusting the implantation conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Alivisatos, A.P., Science 271, 933 (1996).Google Scholar
2. Special issue: Chemistry of Materials, vol. 8, no. 8 (1996).Google Scholar
3.Borrelli, N.F., Hall, D.W., Holland, H.J., and Smith, D.W., J. Appl. Phys. 61, 5399 (1987).Google Scholar
4.White, C.W., Budai, J.D., Withrow, S.P., Pennycook, S.J., Hembree, D.M., Zhou, D.S., Vo-Dinh, T., and Magruder, R.H., Mat. Res. Soc. Symp. Proc. 316, 487 (1994).Google Scholar
5.Atwater, H.A., Shcheglov, K.V., Wong, S.S., Vahala, K.J., Flagan, R.C., Brongersma, M.L., and Polman, A., Mat. Res. Soc. Symp. Proc. 316, 409 (1994).Google Scholar
6.Shimizu-Iwayama, T., Fujita, K., Nakao, S., Saitoh, K., Fujita, T., and Itoh, N., J. Appl. Phys. 75, 7779 (1994).Google Scholar
7.Komoda, T., Kelly, J.P., Nejim, A., Homewood, K.P., Hemment, P.L.F., and Sealy, B.J., Mat Res. Soc. Symp. Proc. 358, 163 (1995).Google Scholar
8.Mutti, P., Ghislotti, G., Bertoni, S., Bonoldi, L., Cerofolini, G., Meda, L., Grilli, E., and Guzzi, M., Appl. Phys. Lett. 66, 851 (1995).Google Scholar
9.Lifshitz, I.M. and Slyozov, V.V., J. Phys. Chem. Solids 19, 35 (1961).Google Scholar
10.Voorhees, P.W., Annu. Rev. Mater. Sci. 22, 197 (1992).Google Scholar
11.Zhu, J.G., White, C.W., Budai, J.D., Withrow, S.P., and Chen, Y., Mat. Res. Soc. Symp. Proc. 358, 175 (1995).Google Scholar
12.White, C.W., Budai, J.D., Zhu, J.G., Withrow, S.P., Zuhr, R.A., Hembree, D.M., Henderson, D.O., Ueda, A., Tung, Y.S., Mu, R., and Magruder, R.H., J. Appl. Phys. 79, 1876 (1996).Google Scholar
13.White, C.W., Budai, J.D., Zhu, J.G., Withrow, S.P., and Aziz, M.J., Appl. Phys. Lett. 68, 2389 (1996).Google Scholar
14.Feldman, L., private communication.Google Scholar
15.Sukumar, V. and Doremus, R.H., phys. stat. sol. (b) 179, 307 (1993).Google Scholar
16.Warnock, J. and Awschalom, D.D., Phys. Rev. B. 32, 5529 (1985).Google Scholar
17.Fuyu, Y. and Parker, J.M., Materials Letters 6, 233 (1988).Google Scholar
18.Pankove, J.I., Optical Processes in Semiconductors, Dover Publications, New York, 1971.Google Scholar
19.Brus, L.E., J. Chem. Phys. 80, 4403 (1984).Google Scholar
20.Lippens, P.E. and Lannoo, M., Phys. Rev. B 39, 10935 (1989).Google Scholar
21.White, C.W., McHargue, C.J., Sklad, P.S., Boatner, L.A., and Farlow, G.C., Materials Science Reports 4, 41 (1989).Google Scholar
22.White, C.W., Boatner, L.A., Sklad, P.S., McHargue, C.J., Rankin, J., Farlow, G.C., and Aziz, M.J., Nucl. Instr. Methods B 32, 11 (1988).Google Scholar
23.Yu, N., Mclntyre, P.C., Nastasi, M., and Sickafus, K.E., Phys. Rev. B 52, 17518 (1995).Google Scholar
24.Cao, S., Pedraza, A.J., Lowndes, D.H., and Allard, L.F., Appl. Phys. Lett. 65, 2940 (1994).Google Scholar