Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T10:17:10.332Z Has data issue: false hasContentIssue false

Synthesis of Unidirectionally Solidified Y‐Ba‐Cu‐0 Bulk Superconductors with High Critical Current Densities

Published online by Cambridge University Press:  28 February 2011

E. Yanagisawa
Affiliation:
Research Center, Asahi Glass Co. Ltd., 1150 Hazawa, Kanagawa, Yokohama 221, Japan
S. Kondoh
Affiliation:
Research Center, Asahi Glass Co. Ltd., 1150 Hazawa, Kanagawa, Yokohama 221, Japan
J. Shimoyama
Affiliation:
Research Center, Asahi Glass Co. Ltd., 1150 Hazawa, Kanagawa, Yokohama 221, Japan
J. Kase
Affiliation:
Research Center, Asahi Glass Co. Ltd., 1150 Hazawa, Kanagawa, Yokohama 221, Japan
T. Matsubara
Affiliation:
Research Center, Asahi Glass Co. Ltd., 1150 Hazawa, Kanagawa, Yokohama 221, Japan
T. Morimoto
Affiliation:
Research Center, Asahi Glass Co. Ltd., 1150 Hazawa, Kanagawa, Yokohama 221, Japan
Get access

Abstract

(Y,Ho)‐Ba‐Cu‐0 superconductors with the high critical current densities (Jc) in an applied magnetic field have been synthesized by a unidirectional melt solidification method. Melt solidified bulk materials are composed of large plate‐shape (Y,Ho)Ba2Cu3Oy crystals which contain small (∼5 um) particles of (Y.Ho)2BaCuO5. The Jc value of the melt solidified (Y,Ho)‐Ba‐Cu‐0 sample is ∼10000 A/cm2 at 77K, H = IT and this value is much higher than the value of 4200 A/cm2 of the melt solidified Y‐Ba‐Cu‐O sample.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q. and Chu, C. W., Phys. Rev. Lett. 8 908 (1987).Google Scholar
2 Maeda, H., Tanaka, Y., Fukutomi, M. and Asano, T., Jpn. J. Appl. Phys., 7 L209 (1988).Google Scholar
3 Sheng, Z. Z. and Hermann, A. M., Nature 332 (1988) 138.Google Scholar
4 Hikata, T., Nishikawa, T., Mukai, H., Sato, K. and Hitotsuyanagi, H., Jpn. J. Appl. Phys., 28, L1204 (1989)Google Scholar
5 Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., van Dover, R. B., Kammlott, G. W., Fastnacht, R. A. and Keith, H. D., Phys. Rev. B37, 7850 (1988).Google Scholar
6 Murakami, M., Morita, M. and Koyama, N., Jpn. J. Appl. Phys. 28, L1125 (1989).Google Scholar
7 Kase, J., Shimoyama, J., Matsubara, T. and Morimoto, T., presented at the 36th Annual Meeting of The Japan Society of Applied Physics and Related Societies, Chiba, Japan, 1989 (unpublished).Google Scholar
8 Aserage, T. and Keefer, K. J.Mater. Res. 3, 1279 (1988).Google Scholar
9 Licci, F., Tissot, P. and Scheel, H. J., J. Less‐Common Met. 150, 201 (1989).Google Scholar
10 Bean, C. P., Phys. Rev. Lett. 8, 250 (1962).Google Scholar