Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T05:36:38.913Z Has data issue: false hasContentIssue false

Synthesis of Si3N4 Powder by Thermal Decomposition of SI(NH)2

Published online by Cambridge University Press:  25 February 2011

Silvia Ampuero
Affiliation:
Powder Technology Laboratory, Materials Science Department, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne
Paul Bowen
Affiliation:
Powder Technology Laboratory, Materials Science Department, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne
Terry A. Ring
Affiliation:
Chemical Engineering Department, University of Utah, Salt Lake City, Utah 84112
Get access

Abstract

A fine white α-Si3N4 powder has been produced by the thermal decomposition of the coprecipitation product of the reaction between SiC14 and NH3. The Cl content, due to a reaction between Si(NH)2 and the NH4Cl by-product during the thermal treatment of the coprecipitate, has been reduced by using an isothermal step at ≈ 250°C in the heat treatment cycle.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Berezhnoi, A. S., Silicon and its Binary Systems, (New York, 1960) p. 612.Google Scholar
2. Parr, N. L., Martin, G. F. and May, E. R. W., Special Ceramics, ed. by Popper, P. (Heywood & Company Ltd, London, 1960) p. 112.Google Scholar
3. Sorrell, C. C. and McCartney, E. R., Materials Forum 9 (3), 148161 (1986).Google Scholar
4. Wotting, G. and Ziegler, G., Interceram, 35 (2), 3235 (1986).Google Scholar
5. Symons, W. and Danforth, S. C., Advances in Ceramics, 21: Ceramic Powder Science, (The American Ceramic Society, Inc Copyright 1987) p 249256.Google Scholar
6. Kendall, K., Powder Technology 58, 151161 (1989).Google Scholar
7. Rhodes, W. H. and Natansohn, S., Ceramic Bulletin, 68 (10), 18041812 (1989).Google Scholar
8. Clarke, D. R., J. Am. Ceram. Soc., february, C21-C23 (1982).Google Scholar
9. Engel, W.,Powder Metallurgy International 10 (3), 124127 (1978).Google Scholar
10. Schoenung, J. M., Ceramic Bulletin 70 (1), 112116 (1991).Google Scholar
11. Prochazka, S. and Greskivich, C., Ceramic Bulletin 57 (6), 579586 (1978).Google Scholar
12. Crosbie, G. M., Predmesky, R. L., Nicholson, J. M. and Stiles, E. D., Ceramic Bulletin 68 (5), 10101014 (1989).Google Scholar
13. Mazdiyasni, K. S., Cooke, C. M., Dayton, U.S. Patent No. 3 959 446 (25 May 1976).Google Scholar
14. Pugar, E. A. and Morgan, P. E. D., Better Ceramics through Chemistry III, ed. by Brinker, C. J., Clark, D. E. and Ulrich, D. R. (Materials Research Soc., Pittsburgh, 1988).Google Scholar
15. Tsu, D. V., Lucovsky, G., and Mantini, M. J., Physical Review B, 33 (19), 70697076 (1986).Google Scholar
16. Mazdiyasni, K. S., and Cooke, C. M., J. Am. Ceram. Soc., 56 (12), 628633 (1973).Google Scholar
17. Sneed, M. C. and Brasted, R. C., Comprehensive Inorganic Chemistry 5 (D. Van Nostrand Co., New York, 1966) p. 173.Google Scholar
18. Billy, M., Ann. Chem., 4, 818851 (1959).Google Scholar
19. Glemser, V. O. and Naumann, P., Z. Anorg. Allg. Chemie, 298, 134141 (1959).Google Scholar