Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T09:47:09.803Z Has data issue: false hasContentIssue false

Synthesis of Semi-Conducting Nanoparticles within a Protein Template

Published online by Cambridge University Press:  11 February 2011

Kim K. W. Wong
Affiliation:
NanoMagnetics Ltd., 108 Longmead Road, Bristol, BS16 7FG, United Kingdom
Eric L. Mayes
Affiliation:
NanoMagnetics Ltd., 108 Longmead Road, Bristol, BS16 7FG, United Kingdom
Get access

Abstract

The ability to synthesise and tune photoresponsive and photoredox II-VI semi-conductor nanoparticles by quantum confinement is a continuously and rapidly developing area. Chemical methods are useful in producing dispersions of nanoparticles of uniform size in many organic solvents. Such synthetic methods employ the use of reverse micelles [1,2], phospholipid vesicles[3,4] or capping agents[5,6]to restrict particle size and growth to the nanometre regime.

The production of super lattice assemblies, through, for example the use of controlled crystallisation [7], Langmuir monolayers[8], Langmuir Blogget films[9], and self assembled short chain dithiol monolayers[10] on gold substrates has also received attention in the past. This latter approach potentially opens the way for self assembled electro-luminescent devices[11].

The ability to couple organic self assembly and inorganic nano-synthesis could also provide a route toward the chemical synthesis of an organised array of quantum-confined semiconductors. An aspect of this synthesis with construction approach is the possible coupling of biological templating systems to produce biomimetic materials [12,13]. In fact, an example would be the stabilised CdS nanoparticles in yeast binding to phytochelatin peptides which are secreted in response to metal toxicification [14].

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Steigerwald, M.L., Alivisatos, A.P., Gibson, J.M., Harris, T.D., Kortan, R., Muller, A.M., Thayer, A.M., Duncan, T.M, Douglas, D.C. and Brus, L.E., J. Am. Chem. Soc. 110, 3046 (1988)Google Scholar
2. Kortan, A.R., Hull, R., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J. and Brus, L.E., J. Am. Chem. Soc. 112, 13278 (1990)Google Scholar
3. Tricot, Y.-M., and Fendler, J.H., J. Phys. Chem. 90, 2555 (1986)Google Scholar
4. Watzke, H.J. and Fendler, J.H., J. Phys. Chem. 91, 854 (1987)Google Scholar
5. Katari, J.E.B., Colvin, V.L. and Alivisatos, A.P., J. Phys. Chem, 98, 4109 (1994)Google Scholar
6. Trindale, T. and O'Brien, P., Adv. Mater. 8, 161 (1996)Google Scholar
7. Herron, N., Calabrese, J.C., Farneth, W.E. and Wang, Y., Science 259, 1426 (1993)Google Scholar
8. Zhao, X.K., Yang, J., McCormick, L. and Fendler, J.H., J. Phys. Chem. 96, 9933 (1992)Google Scholar
9. Dabbousi, B.O., Murray, C.B., Rubner, M.F. and Bawendi, M.G., Chem. Mater. 6, 216 (1994)Google Scholar
10. Colvin, V.L., Goldstein, A.N. and Alivisatos, A.P., J. Am. Chem Soc. 114, 5221 (1992)Google Scholar
11. Colvin, V.L., Schlamp, M.C. and Alivisatos, A.P., Nature 370, 354 (1994)Google Scholar
12. Mann, S., Nature 365, 400 (1993)Google Scholar
13. Mann, S., J. Mater. Chem. 5, 935 (1995)Google Scholar
14. Dameron, C.T., Resse, R.N., Mehra, R.K., Kortan, A.R., Carroll, P.J., Steigerwald, M.L., Brus, L.E. and Winge, D.R., Nature 338, 596 (1989)Google Scholar
15. Meldrum, F.C., Wade, V.J., nimmo, D.L., Heywood, B.R. and Mann, S., 349, 684 (1991)Google Scholar
16. Mackle, P., Charnock, J.M., Garner, S.D., Meldrum, F.C. and Mann, S., J. Am. Chem. Soc. 115, 8471 (1993)Google Scholar
17. Wong, K.K.W., Douglas, T., Gider, S., Awschalom, D.D. and Mamm, S., Chem. Mater. 10, 279 (1998)Google Scholar
18. Douglas, T., Dickson, D.P.E., Betteridge, S., Charnock, J., Garner, C.D. and Mann, S., Science 269, 54 (1995)Google Scholar
19. Pead, S., Durrant, E., Webb, B., Larson, C., Heaton, D., Johnson, J. and Watt, G.D., J. Inorg. Biochem. 59, 15 (1995)Google Scholar
20. Meldrum, F.G., Douglas, T., Levi, S., Arosio, P. and Mann, S., J. Inorg. Biochem. 58, 59 (1995)Google Scholar
21. Hainfeld, J.F., Proc. Natl. Acad. Sci. USA, 89, 11064 (1992)Google Scholar
22. Zborowski, M., Fuh, C.B., Green, R., Baldwin, N.J., Reddy, S., Douglas, T., Mann, S. and Chalmers, J.J., Cytometry 24, 251 (1996)Google Scholar