Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T02:44:39.691Z Has data issue: false hasContentIssue false

Synthesis of nanomaterials in Highly Swollen Liquid Crystals

Published online by Cambridge University Press:  01 February 2011

Myriam Tokumoto
Affiliation:
Institut Européen des Membranes, UMR 5635-CNRS, CNRS, 1919 route de Mende, F-34293 Montpellier Cedex 5 (FRANCE), [email protected]
Geetarani Surendran
Affiliation:
Institut Européen des Membranes, UMR 5635-CNRS, CNRS, 1919 route de Mende, F-34293 Montpellier Cedex 5 (FRANCE), [email protected] Laboratoire de Chimie Physique, Bât. 349, UMR 8000-CNRS, Université Paris XI, F- 91400 Orsay Cedex(FRANCE), [email protected]
Eduardo Pena dos Santos
Affiliation:
Institut Européen des Membranes, UMR 5635-CNRS, CNRS, 1919 route de Mende, F-34293 Montpellier Cedex 5 (FRANCE), [email protected]
Patricia Kooyman
Affiliation:
National Centre for HREM, Delft University of Technology, Rotterdamesweg 137, 2628 AL Delft, (The NETHERLANDS), [email protected]
Hynd Remita
Affiliation:
Laboratoire de Chimie Physique, Bât. 349, UMR 8000-CNRS, Université Paris XI, F- 91400 Orsay Cedex(FRANCE), [email protected]
Laurence Ramos
Affiliation:
Groupe de Dynamique des Phases Condensées, UMR 5581-CNRS, Université Montpellier II, F-34095 Montpellier Cedex 05, (FRANCE), [email protected]
Eric Prouzet
Affiliation:
Institut Européen des Membranes, UMR 5635-CNRS, CNRS, 1919 route de Mende, F-34293 Montpellier Cedex 5 (FRANCE), [email protected] Laboratoire pour l'Utlisation du Rayonnement Electromagnétique (LURE), UMR 130-CNRS, Université Paris-Sud, F-91402 Orsay Cedex(FRANCE), [email protected]
Get access

Abstract

Highly Swollen Liquid Crystals (SLC) that exhibit hexagonal, cubic or lamellar symmetry have been demonstrated to form a new type of soft nanoreactors. These mesophases are formed by a quaternary mixture combining a surfactant, an aqueous solution of inorganic salt, cyclohexane as a hydrophobic swelling solvent and pentanol-1 as a co-surfactant. Unlike previous works that used a “nanocasting” approach in a binary liquid crystal, the composition of these SLC allows syntheses to be proceeded inside the aqueous and/or the organic phase. Therefore inorganic, metallic or organic materials can be prepared and the geometry of the SLC controls the final shape of the prepared by this approach. We will describe various materials that were obtained by different processes in these SLCs: rod-like nanoaggregates of metal nanoparticles were synthesized by chemical reduction in the aqueous part of the hexagonal mesophase, microrods of zirconia were obtained by slow crystallogenesis from hydrated zirconium oxychloride, mesoporous zirconia was prepared by a faster hydrolysis and polymer micro- and nano-fibers were obtained in the organic phase by photopolymerization or radiolysis. We will show how the changements in the SLC structure can modify the structure of the compounds synthesized inside and that this system constitutes a quite universal medium for the preparation of nanomaterials or nanostructured systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ozin, G. A., Adv. Mater. 4, 612 (1992).Google Scholar
2. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. and Beck, J. S., Nature 359, 710 (1992).Google Scholar
3. Inagaki, S., Fukushima, Y. and Kuroda, K., J. Chem. Soc., Chem. Commun. 680 (1993).Google Scholar
4. Monnier, A., Schüth, F., Huo, Q., Kumar, D., Margolese, D. I., Maxwell, R. S., Stucky, G. D., Krishnamurty, M., Petroff, P. M., Firouzi, A., Janicke, M. and Chmelka, B. F., Science 261, 1299 (1993).Google Scholar
5. Tanev, P. T., Chibwe, M. and Pinnavaia, T. J., Nature 368, 321 (1994).Google Scholar
6. Bagshaw, S. A., Prouzet, E. and Pinnavaia, T. J., Science 269, 1242 (1995).Google Scholar
7. Attard, G. S., Glyde, J. C. and Göltner, C. G., Nature 378, 366 (1995).Google Scholar
8. Attard, G. S., Bartlett, P. N., Coleman, N. R. B., Elliott, J. M., Owen, J. R. and Wang, J. H., Science 278, 838 (1997).Google Scholar
9. Attard, G. S., Göltner, C. G., Corker, J. M., Henke, S. and Templer, R. H., Angew. Chem. Int. Ed. Eng. 36, 1315 (1997).Google Scholar
10. Göltner, C. G. and Antonietti, M., Adv. Mater. 9, 431 (1997).Google Scholar
11. Göltner, C. G., Berton, B., Krämer, E. and Antonietti, M., Adv. Mater. 11, 395 (1999).Google Scholar
12. Ramos, L. and Fabre, P., Langmuir 13, 682 (1997).Google Scholar
13. Ramos, L., Fabre, P. and Ober, R., Eur. Phys. B. 1, 319 (1998).Google Scholar
14. Eiser, E., Bouchama, F., Thathagar, M. B., and Rothenberg, G., Chem. Phys. Chem. 4, 526 (2003).Google Scholar
15. Mohamed, M. B., Volkov, V., Link, S. and EI-Sayed, M. A., Chem. Phys. Lett. 317, 517 (2000).Google Scholar
16. Melosh, N. A., Boukai, A., Diana, F., Geradot, B., Badolato, A., Petroff, P. M. and Heath, J., Science, 300, 112 (2003).Google Scholar
17. Li, W. -J., Shi, E. –W., Ko, J. –M., Chen, Z. –Z., Ogino, H. and Fukuda, T., J. Crystal Growth 250, 418 (2003).Google Scholar
18. Hollensteiner, S., Spiecker, E., Dieker, C., Jäger, W., Adelung, R., Kipp, L., and Skibowski, M., Materials Sci. Eng. C 23, 171 (2003).Google Scholar
19. Meng, X. M., Hu, J. Q., Jiang, Y., Lee, C. S. and Lee, S.T., Chem. Phys. Lett. 370, 825 (2003).Google Scholar
20. Wang, J.C., Zhan, C.Z. and Li, F.C., Solid State Commu. 125, 629 (2003).Google Scholar
21. Yuan, H.J., Xie, S. S., Liu, D. F., Yan, X. Q., Zhou, Z. P., Ci, L. J., Wang, J. X., Gao, Y., Song, L., Liu, L. F., Zhou, W. Y. and Wang, G., Chem. Phys. Lett. 371, 337 (2003).Google Scholar
22. Zhang, J., Qing, X., Jiang, F. and Dai, Z., Chem. Phys. Lett. 371, 311 (2003).Google Scholar
23. Ryoo, R., Kim, J. M., Ko, C. H. and Shin, C. H., J. Phys. Chem. 100, 17718 (1996).Google Scholar
24. Ryoo, R., Ko, C. H., Kim, J. M. and Howe, R., Catal. Lett. 37, 29 (1996).Google Scholar
25. Sasaki, M., Osada, M., Higashimoto, N., Yamamoto, T., Fukuoka, A. and Ichikawa, M., J. Mol. Cat. A 141, 223 (1999).Google Scholar
26. Liu, Z., Sakamoto, Y., Ohsuna, T., Hiraga, K., Terasaki, O., Ko, C. H., Shin, H. J. and Ryoo, R., Angew. Chem. Int. Ed. Eng. 39, 3107 (2000).Google Scholar
27. Liu, Z., Terasaki, O., Ohsuna, T., Hiraga, K., Shin, H. J., Hyun, and Ryoo, R., Chem. Phys. Chem., 229 (2001).Google Scholar
28. Ghosh, A., Patra, C. R., Mukherjee, P., Sastry, M. and Kumar, R., Microporous Mesoporous Mater. 58, 201 (2003).Google Scholar
29. Ryoo, R., Jun, S., Kim, J. M. and Kim, M.J., J. Chem. Soc., Chem. Commu., 2225 (1997).Google Scholar
30. Shin, H.J., Ryoo, R., Liu, Z. and Terasaki, O., J. Am. Chem. Soc. 123, 1246 (2001).Google Scholar
31. Yamamoto, T., Shido, T., Inagaki, S., Fukushima, Y. and Ichikawa, M., J. Am. Chem. Soc. 118, 5810 (1996).Google Scholar
32. Wu, Q., Zheng, N., Ding, Y. and Li, Y., Inorg. Chem. Commu. 5, 671 (2002).Google Scholar
33. Zhang, D., Qi, L., Cheng, H. and Mal, J., J. Coll. Interface Science 246, 413 (2002).Google Scholar
34. Yao, Y. and Thölén, A. R., Nanostructured Mater. 12, 661 (1999).Google Scholar
35. Bechinger, C., Curr. Op. Coll. Interf. Sci. 7, 204 (2002).Google Scholar
36. Pena dos Santos, E., Santilli, C. V., Pulcinelli, S. H. and Prouzet, E. Chem. Mater. 16, 1487 (2004).Google Scholar
37. Joo, J., Park, K. T., Kim, B. H., Kim, A. S., Lee, S. Y., Jeong, C. K., Lee, J. K., Park, D. H., Yi, W. K., Lee, S. H. and Ryu, K. S., Synthetic Metals 135–136, 7 (2003).Google Scholar
38. Pileni, M. –P., J. Chim. Phys. 84, 1037 (1987).Google Scholar
39. Pileni, M. –P., J. Phys. Chem. 97, 6961 (1993).Google Scholar