Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T09:48:47.937Z Has data issue: false hasContentIssue false

Synthesis of Nanocrystalline Fe-based Particles by CO2 Laser Pyrolysis

Published online by Cambridge University Press:  25 February 2011

Xiang-Xin Bi
Affiliation:
Center for Applied Energy Research, Department of Physics and Astronomy, University of Kentucky, Lexington, KY40511-8433, USA
Peter C. Eklund
Affiliation:
Center for Applied Energy Research, Department of Physics and Astronomy, University of Kentucky, Lexington, KY40511-8433, USA Department of Physics and Astronomy, University of Kentucky, Lexington, KY40511-8433, USA
Get access

Abstract

Nanocrystalline Fe (α and γ phases), Fe-carbide (Fe3C, Fe7C3 ), Fe-sulfide (Fel-xS), Fe-nitride (Fe3N and Fe4N) particles with narrow size distributions have been produced using a CO2 laser pyrolysis of vapor mixtures of Fe(CO)5 with C2H4, H2S or NH3. Typical production rates of ∼ 1 - 3 g/hr were observed. The chemical phase and size of these nanoscale particles can be controlled by reaction parameters such as laser intensity and gas composition. Pyrolytic carbon coatings were found to be present on the Fe-carbide particles, but absent in the Fe-sulfide and -nitride particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bi, Xiang-Xin, Ganguly, B., Huffman, G., Huggins, F. E., Endo, M. and Eklund, P. C., Journal of Material Research Society, 1992, submitted.Google Scholar
2. Haggerty, J. S., “Sinterable Powders from Laser-Driven Reactions”, in Laser-induced Chemical Processes, Steinfeld, J.I., editor, 1981, Plenum Press: New York.Google Scholar
3. Curcio, F., Ghiglione, G., Musci, M., and Nannetti, C., Applied Surface Science, 36 p.5258(1989).Google Scholar
4. Buerki, Peter R., Troxler, Thomas, and Leutwyler, Samuel, “Synthesis of Ultrafine Si3N4 Particles by CO2-laser Induced Gas Phase Reactions”, in High Temperature Science, Vol. 27. 1990, Humana Press Inc., p. 323.Google Scholar
5. Curcio, F., Musci, M., and Notaro, N., Applied Surface Science, 46p.225229(1990).Google Scholar
6. Fantoni, R., Borsella, E., Piccirillo, S., and Enzo, S., SPIE, 1279p.77(1990).Google Scholar
7. Rice, G. W., and Woodin, R. L., J. Am. Ceram. Soc., 71p.C181(1988).Google Scholar
8. Fiato, R. A., Rice, G. W., Miseo, S., and Soled, S. L., United States Patent, 4,637,753(1987).Google Scholar
9. Rice, Gary W., Fiato, Rocco A., and Soled, Stuart L., United States Patent, 4,659,681(1987).Google Scholar
10. Hager, Todd et al. , in preparation(1992).Google Scholar
11. Hirano, S.-I., and Tajima, S., Journal of Materials Science, 25p.4457(1990).Google Scholar
12. Patty, R. R., Russwurm, G. M., McClenny, W. A., and Morgan, D. R., Applied Optics, 13(12), p.2850(1974).Google Scholar
13. Cullity, B. D., Elements of X-Ray Diffraction, 1967, Addison-Wesley Publishing Company, Inc. Google Scholar
14. JCPDS, XRD powder diffraction data file(1991).Google Scholar
15. Herbstein, F. H., and Snyman, J. A., Inorg. Chem., 3p.894(1964).Google Scholar
16. Dines, T. J., Tither, D., Dehbi, A., and Matthews, A., Carbon, 29(2), p.225231(1991).Google Scholar
17. Everall, N.J., Lumsdon, J., and Christopher, D. J., Carbon, 29(2), p.133137(1991).Google Scholar
18. Garba, E. J. D., and Jacobs, R. L., J. Phys. Chem. Solids, 50(2), p.101105(1989).Google Scholar