Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T11:28:08.273Z Has data issue: false hasContentIssue false

Synthesis of Mesoporous Gadolinium Doped Ceria - Platinum Composite

Published online by Cambridge University Press:  21 February 2012

Hoi Yung
Affiliation:
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
Kwong-Yu Chan
Affiliation:
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
Frank Leung-Yuk Lam
Affiliation:
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
Get access

Abstract

Oxygen reduction in SOFC cathodes has long been the rate determining step in SOFC operations, mixed ionic-electronic conductors (MIECs) and/or forming composite between cathode and electrolyte materials have been common strategies in order to aid the cathode kinetics. We demonstrate here a viable synthesis route to impregnate mesopores with high loading of platinum towards a mesoscale bicontinuous material that composed of channels of a fast ionic conductor, i.e. gadolinium doped ceria (GDC) intertwined with channels of a good electronic conductor, i.e. Pt. This highly structural composite material holds the promise of a high performing cathode in SOFC.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Laguna-Bercero, M. A., Skinner, S. J. and Kilner, J. A., Journal of Power Sources 192 (1), 126131 (2009).Google Scholar
2. Dusastre, V. and Kilner, J. A., Solid State Ionics 126 (1-2), 163174 (1999).Google Scholar
3. Leng, Y. J., Chan, S. H., Khor, K. A. and Jiang, S. P., Journal of Applied Electrochemistry 34 (4), 409415 (2004).Google Scholar
4. Hart, N. T., Journal of Materials Science 36 (5), 10771085 (2001).Google Scholar
5. Jiang, S. P., Leng, Y. J., Chan, S. H. and Khor, K. A., Electrochemical and Solid-State Letters 6 (4), A67A70 (2003).Google Scholar
6. Jiang, S. P., Duan, Y. Y. and Love, J. G., Journal of The Electrochemical Society 149 (9), A1175A1183 (2002).Google Scholar
7. Dongyuan Zhao, P. Y., Melosh, Nick, Feng, Jianglin, Chmelka, Bradley F., Stucky, Galen D., Advanced Materials 10 (16), 13801385 (1998).Google Scholar
8. Kim, T.-W., Kleitz, F., Paul, B. and Ryoo, R., Journal of the American Chemical Society 127 (20), 76017610 (2005).Google Scholar
9. Yue, W. and Zhou, W., Progress in Natural Science 18 (11), 13291338 (2008).Google Scholar
10. Dickinson, C., Zhou, W., Hodgkins, R. P., Shi, Y., Zhao, D. and He, H., Chemistry of materials 18 (13), 30883095 (2006).Google Scholar
11. Jiao, K., Zhang, B., Yue, B., Ren, Y., Liu, S., Yan, S., Dickinson, C., Zhou, W. and He, H., Chemical Communications (45), 5618-5620 (2005).Google Scholar
12. Wang, Y., Yuan, X., Liu, X., Ren, J., Tong, W., Wang, Y. and Lu, G., Solid State Sciences 10 (9), 11171123 (2008).Google Scholar
13. Mamak, M., Coombs, N. and Ozin, G., Advanced materials 12 (3), 198202 (2000).Google Scholar
14. Jiao, F., Hill, A. H., Harrison, A., Berko, A., Chadwick, A. V. and Bruce, P. G., Journal of the American Chemical Society 130 (15), 52625266 (2008).Google Scholar
15. Yue, and Zhou, , Chemistry of materials 19 (9), 23592363 (2007).Google Scholar
16. Rossinyol, E., Pellicer, E., Prim, A., Estradé, S., Arbiol, J., Peiró, F., Cornet, A. and Morante, J., Journal of Nanoparticle Research 10 (2), 369375 (2008).Google Scholar
17. Kim, T.-W. and Solovyov, L. A., Journal of Materials Chemistry 16 (15), 14451455 (2006).Google Scholar
18. Zhang, T. S., Ma, J., Chan, S. H., Hing, P. and Kilner, J. A., Solid State Sciences 6 (6), 565572 (2004).Google Scholar
19. Kontoulis, I. and Steele, B. C. H., Solid State Ionics 47 (3-4), 317324 (1991).Google Scholar