Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-09T05:26:42.606Z Has data issue: false hasContentIssue false

Synthesis of High-K Titanium Oxide Thin Films Formed by Metalorganic Decomposition

Published online by Cambridge University Press:  10 February 2011

Hisashi Fukuda
Affiliation:
Department of Electrical and Electronic Engineering, Faculty of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran-shi, Hokkaido 050-8585, Japan E-mail address: [email protected]
Yoshihiro Ishikawa
Affiliation:
Department of Electrical and Electronic Engineering, Faculty of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran-shi, Hokkaido 050-8585, Japan
Seiogo Namioka
Affiliation:
Department of Electrical and Electronic Engineering, Faculty of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran-shi, Hokkaido 050-8585, Japan
Shigeru Nomura
Affiliation:
Department of Electrical and Electronic Engineering, Faculty of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran-shi, Hokkaido 050-8585, Japan
Get access

Abstract

Titanium oxide (TiO2) thin ftlms were formed on a Si substrate by metalorganic decomposition(MOD) at temperatures ranging from 600 to 1100°C. As-deposited films were in the amorphous state and were completely transformed after annealing at 600°C to a crystalline structure with anatase as its main component. During crystallization, a reaction between TiO2 and Si occurred at the interface, which resulted in the formation of a thin interfacial SiO2 layer. Capacitance-voltage measurement showed good dielectric properties with a maximum dielectric constant of 76 for films annealed at 700°C. For the crystallized TiO2 films, the interface trap density was 1 × 1011 cm−2 eV−1, and the leakage current was 1 × 10−8 A/cm2 at 0.2 MV/cm. The modified structure of TiO2/SiO2/Si is expected to be suitable for the dielectric layer in an integrated circuit in place of conventional SiO2 films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lobl, P., Huppertz, M. and Mergel, D., Thin Solid Films 251, 72 (1994).Google Scholar
2 Gan, J. -Y., Chang, Y. C. and Wu, T. B., Appl. Phys. Lett. 72, 332 (1998).Google Scholar
3 Heitmann, W., Appl. Opt. 10, 2414 (1971).Google Scholar
4 Ha, H.-K., Yoshimoto, M., Koinuma, H., Moon, B. -K. and Ishiwara, H., Appl. Phys. Lett. 68, 2965 (1996).Google Scholar
5 Rausch, N. and Burte, E. P., J. Electrochem. Soc. 140, 145(1993).Google Scholar
6 Kim, H. -S., Gilmer, D. C., Campbell, S. A. and Polla, D. L, Appl. Phys. Lett. 69, 3996 (1996).Google Scholar
7 Campbell, S. A., Gilmer, D. C., Wang, X. -C., Hsieh, M. -T., Kim, H. -S., Gladfelter, W. L and Yan, J., IEEE Trans. Electron Devices 44, 104 (1997).Google Scholar
8 Shin, H., Guire, M. R. De and Heuer, A. H., J. Appl. Phys. 83, 3311 (1998).Google Scholar
9 Kim, H. -S., Campbell, S. A., Gilmer, D. C., Kaushik, V., Conner, J., Prabhu, L. and Anderson, A., J. Appl. Phys. 85, 3278 (1999).Google Scholar
10 Turkovic, A., Ivanda, M., Drasner, A., Vranesa, V. and Persin, M., Thin Solid Films 198, 199 (1991).Google Scholar
11 Cava, R. F., Peck, W. F. Jr., and Krajewski, J. J., Nature 37, 215 (1995).Google Scholar
12 Gan, J. -Y., Chang, Y. C. and Wu, T. B., Appl. Phys. Lett. 72, 332 (1998).Google Scholar
13 Fukushima, J., Kodaira, K. and Matsushita, T., J. Mater. Sci. 19, 595 (1984).Google Scholar
14 Joshi, P. C. and Desu, S. B.: J. Appl. Phys. 80, 2349 (1996).Google Scholar
15 Joshi, P. C., Stowell, S. and Desu, S. B., Appl. Phys. Lett. 71, 1341(1997).Google Scholar
16 Zhang, Z. G., Wang, Y. N., Zhu, J. S., Yan, F., Lu, X. M. and Shen, H. M. and Liu, J. S., Appl. Phys. Lett. 73, 3674 (1998).Google Scholar
17 Hu, G. D., Wilson, I. H., Xu, J. B., Cheung, W. Y., Wong, S. P. and Wong, H. K., Appl. Phys. Lett. 74, 1221(1999).Google Scholar
18 Snyder, P. G., Rost, M. C., Bu-Abbud, H. and Woollam, J. A., J. Appl. Phys. 60 3293 (1986).Google Scholar
19 Jenkins, F. A. and White, H. E., Fundamentals of Optics (McGraw-Hill, New York, 1957) pp.468.Google Scholar
20 Azzam, R. M. A. and Bashara, N. M., Ellipsometry and Polarized Light (Elsevier, New York, 1977) Chap.4.Google Scholar
21 Kreisel, J., Pignard, S., Vincent, H. and Senateur, J. P., Appl. Phys. Lett. 73, 1194 (1998).Google Scholar