Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-20T07:13:56.410Z Has data issue: false hasContentIssue false

Synthesis of high temperature superconductive and colossal magnetoresistive surfaces on insulating particles

Published online by Cambridge University Press:  10 February 2011

D. Kumar
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400
J. Fitz-Gerald
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400
R. K. Singh
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400
Get access

Abstract

The surfaces of insulating alumina particles have been coated with high temperature superconducting, Yba2Cu3O7-x, and colossal magnetoresistive, Pr0.65Ba0.05 Ca0.3 Mn03-x, films. These coatings on particulate surfaces have been realized using a new technique which is based on laser assisted generation of homogeneous flux of ablated materials in front of a fluidized bed of host particles. The coated particulates have been characterized using scanning electron microscopy (SEM), energy dispersive x-ray (EDX) analysis, Auger electron spectroscopy (AES), and superconducting quantum interference device (SQUID) magnetometer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lowndes, D.L., Geohegan, D.B., Purretsky, A.A., Norton, D.P., and Rouleau, C.M., Science 273, p. 898 (1996).Google Scholar
2. Jin, S., Tifel, T.H., McCormack, M., Fastnatch, R. A., Ramesh, R., and Chen, L.H., Science 4, p. 413 (1994).Google Scholar
3. Singh, Rajiv K. and Kumar, D., Mater. Sci. Engg. Rep. (in press).Google Scholar
4. Greedan, J.E., Reilly, A.O', and Stager, C.V., Phys. Rev. B 35, p. 6716 (1987).Google Scholar
5. Wollan, E.W. and Koehler, W.C., Phys. Rev. 100, p. 545 (1955).Google Scholar
6. David, W.I.F., Harrison, W.T.A., Gunn, J.M.F., Moze, O., Soper, A.K., Day, P., Jorgensen, J.D., Hinks, D.G., Beno, M.A., Soderholm, L., Capone, D.W. II, Schuller, I.K., Serger, C.U., Zhang, K., and Grace, J.D., Nature 327, p. 310 (1987).Google Scholar
7. Jonker, G.H. and Van Santen, J.H., Physica 16, p. 337 (1950).Google Scholar
8. Ouellette, J., Indus. Phys. p. 15, June 1997.Google Scholar
9. Naito, M., Kondo, A., and Yokoyama, T., Iron and Steel Intemational Joumal 21 p. 915 (1993).Google Scholar
10. Kousaka, Y., Endo, Y., Alsono, M., Ichitoubo, H., Fukui, A., Adv. Powder Technol. 6, p. 11 (1995).Google Scholar
11. Saito, I. and Sena, M., Kona 13, p. 191 (1993).Google Scholar
12. Singh, R. K. and Narayan, J., Phys. Rev. B 43, p. 8843 (1990).Google Scholar
13. Kumar, D., Sharon, M., Pinto, R., Apte, P. R., Pai, S.P., Purandare, S. C., Gupta, L.C., and Vijayaraghavan, R., Appl. Phys. Lett. 62, p. 3522 (1993).Google Scholar
14. Bean, Charles P., Rev. Mod. Phys. 36, p.31 (1964).Google Scholar