Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T09:53:55.176Z Has data issue: false hasContentIssue false

Synthesis of Heterocyclic Monomers Designed to Produce Conducting Polymer with Specific Redox Requisites and to Evaluate Stereochemical Factors Influencing the Conductivity

Published online by Cambridge University Press:  25 February 2011

Anna Berlin
Affiliation:
Dipartimento di Chimica Organica e Industriale dell', Università di Milano, via e. Golgi 19, Milano, Italy
Elisabetta Brenna
Affiliation:
Dipartimento di Chimica Organica e Industriale dell', Università di Milano, via e. Golgi 19, Milano, Italy
Giorgio. A. Pagani
Affiliation:
Dipartimento di Chimica Organica e Industriale dell', Università di Milano, via e. Golgi 19, Milano, Italy
Franco Sannicolo
Affiliation:
Dipartimento di Chimica Organica e Industriale dell', Università di Milano, via e. Golgi 19, Milano, Italy
Gianni Zotti
Affiliation:
Istituto di Polarografia ed Elettrochimica Preparativa del CNR, C.so Stati Uniti 4, Padova.
Gilberto Schiavon
Affiliation:
Istituto di Polarografia ed Elettrochimica Preparativa del CNR, C.so Stati Uniti 4, Padova.
Get access

Abstract

According to the “spacer” strategy we have previously proposed the monomers candidate for providing conductive polymers endowed with special properties should contain the polymerogenic rings (pyrrole or thiophene), as terminal units, linked to a central π-conjugatively active frame; we describe how it is possible in this way to control the redox potentials E of the polymers derived from such monomers. This control is beneficial because it is possible to increase the E° value of polypyrrole-type systems and decreases the E° value of polythiophene-type systems. Also, the “spacer”may be further functionalised and, being remote from the polymerisation site, cannot alter the conductivity characteristics typical of the polymer derived from the parent heterocycle (pyrrole or thiophene): such a functionalisation may provide the final, tailored, conductive polymer with special properties (e.g. solubility). If the central ring, acting as a spacer, is formed linking two positions of a di-heterocycle with a saturated chain, it is possible to partially control the twist angle between the heterocyclic units. Crystal and molecular structures have shown that dipyrrole units further linked through the nitrogen atoms are quite sensitive to the central ring size. With respect to the conductivity of unsubstituted polypyrrolc, the conductivity of the polymers derived from such monomers is dependent from the twist angle between the rings. This result is relevant to describe conditions of conjugation between the heterocyclic units of a monomer required to produce upon doping a conductive polymer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Skotheim, T. A., ed., Handbook of Conducting Polymers(M. Dekker, New York, 1986) vol. 1 and 2.Google Scholar
[2] Ferrara, J. R. and Williams, J. M., Introduction to Synthetic Electrical Conductors (Academic Press, New York) 1987.Google Scholar
[3] Wynne, K. J. and Street, G. B., MacromoleculeS, 18, 2361 (1985).Google Scholar
[4] Diaz, A. F. and Castillo, J‥, J. Chem. Soc. Chem. Commun, 1980, 397.Google Scholar
[5] Diaz, A. F., Crawley, J. I., Bargon, J., Gardini, G. P. and Torrance, J. B., J. Electroanal. Chem, 121, 355 (1981).Google Scholar
[6] Berlin, A., Bradamante, S., Ferraccioli, R., Pagani, G. and Sannicolò, F., Synth. Met. 18, 117 (1987);Google Scholar
Berlin, A., Bradamante, S., Ferraccioli, R., Pagani, G. A. and Sannicolò', F., J. Chem. Soc. Perkin Trans. 1. 1987, 2631.Google Scholar
[7] Schiavon, G., Zotti, G., Berlin, A., Pagani, G., Sannicolò, F., Synth. Met 28, C199 (1989).Google Scholar
[8] Berlin, A., Pagani, G.A. and Sannicolò', F., J. Chem. Soc. Chem. Commun 1986, 1664.Google Scholar
Berlin, A., Pagani, G., Schiavon, G. and Zotti, G., J. Chem. Soc. Perkin Trans., 2 1990, 699.Google Scholar
[9] Berlin, A., Bradamante, S., Ferraccioli, R., Pagani, G. A. and Sannicolò', F., J. Chem. Soc., Chem. Commun, 1987, 1176.Google Scholar
[10] Berlin, A., Ferraccioli, R., Pagani, G. A. and Sannicolò', F., Synth. Met. 22, 89 (1987).Google Scholar
[11] Zotti, G., Schiavon, G., Berlin, A., Ferraccioli, R., Pagani, G. and Sannicolò', F., Makromol Chem, 190, 405 (1989).Google Scholar
[12] Berlin, A., Pagani, G., Zotti, G. and Schiavon, G., Makromol. Chem 191, 1497 (1990).Google Scholar
[13] Berlin, A., Martina, S., Pagani, G., Schiavon, G. and Zotti, G., Heterocvcles, 32, 85 (1991).Google Scholar
[14] Berlin, A, Martina, S., Pagani, G., Schiavon, G. and Zotti, G., Synth. Met, 41, 363 (1991).Google Scholar
[15] Farmer, M., Soth, S., Fournari, P., Can. J. Chem, 54, 1074 (1975);Google Scholar
Berlin, A., Pagani, G., Zotti, G. and Schiavon, G., Makromol. Chem, in press.Google Scholar
[16] Zanirato, P., Spagnolo, P., Zanardi, G., J. Chem. Soc. Perkin Trans I, 1983, 2551;Google Scholar
Berlin, A., Pagani, G., Sannicolò, F., Schiavon, G. and Zotti, G., Polymer, 32, 1841 (1991).Google Scholar
[17] Jeffries, A. T., Moore, K. C., Ondeyka, D. M., Springsteen, A. W. and MacDowell, D. W. H., J. Ore. Chem, 46, 2885 (1981).Google Scholar
[18] Unpublished results from these laboratories.Google Scholar
[19] Burger, V. and Drier, F., Helv. Chim. Acta, 63, 1190 (1980); Tetrahedron, 39, 2065 (1983).Google Scholar
[20] Berlin, A., Pagani, G., Porzio, W., Zotti, G. and Schiavon, G., unpublished resultsGoogle Scholar
[21] Street, G. B. (private communication).Google Scholar