Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T14:35:32.975Z Has data issue: false hasContentIssue false

Synthesis of Crystalline Structures of CNx, Thin Films Deposited on Sapphire, Quartz and Alumina Substrates

Published online by Cambridge University Press:  10 February 2011

R Alexandrescu
Affiliation:
National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O.Box MG-36, R-76 900 Bucharest, Romania
R. Cireasa
Affiliation:
National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O.Box MG-36, R-76 900 Bucharest, Romania
A. Crunteanu
Affiliation:
National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O.Box MG-36, R-76 900 Bucharest, Romania
C. S. Cojocaru
Affiliation:
National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O.Box MG-36, R-76 900 Bucharest, Romania
I. Morjan
Affiliation:
National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O.Box MG-36, R-76 900 Bucharest, Romania
A. Kumar
Affiliation:
Department of Electrical Engineering, University of South-Alabama, Mobile, AL 36688, U.S.A.
F. Vasiliu
Affiliation:
National Institute for Materials Physics, Electron Microscopy Laboratory, P.O.Box MG-7, Bucharest, Romania
Get access

Abstract

Carbon nitride films raise current interest for their potential applications as ultrahard materials. We report on the formation of crystalline CN structures in films deposited at 248 nm on different substrates (sapphire, quartz, alumina) using the laser-induced CVD method and a gas mixture containing ethylene/nitrous oxide and ammonia as carbon and nitrogen source, respectively. The structural and morphological properties of the films were characterized by different analytical techniques (SEM, TEM, TED and XPS).

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liu, A.Y. and Cohen, M.I., Science 245, p. 841 (1989).Google Scholar
2. Boyd, J.W. in Photochemical Processing of Electronic Materials, edited by Boyd, J.W. and Jackman, R.B., Academic Press, London, 1992, pp. 1550.Google Scholar
3. Alexandrescu, R, Cireasa, R., Pugna, G., Crunteanu, A., Petcu, S., Morjan, I., Mihailescu, I.N. and Andrei, A., Appl. Surf. Sci., 109/110, p. 544 (1997).Google Scholar
4. Crunteanu, A., Cireasa, R., Alexandrescu, R., Morjan, I., Nelea, V., Mihailescu, I.N. and Andrei, A., Surface and Coatings Technology, 100–101, p. 173 (1998).Google Scholar
5. Cireasa, R., Crunteanu, A., Alexandrescu, R., Morjan, I., Martin, C., Mihailescu, I.N., Andrei, A. and Vasiliu, F., Carbon, 36, 5–6, p. 775 (1998).Google Scholar
6. Alexandrescu, R., Crunteanu, A., Cireasa, R., Cojocaru, S., Morjan, I. and Kumar, A. in Hard Coatings Based on Borides, Carbides and Nitrides, edited by Kumar, A., Chung, Y. W., Chia, R.W. (The Minerals, Metals and Materials Soc., 1998), pp. 7388.Google Scholar
7. Guo, Y. and Goddard, W.A., Chem. Phys. Lett. 237, p. 634 (1995).Google Scholar
8. Zhang, Y., Zhou, Z. and Li, H., Appl. Phys. Lett. 68, p. 634 (1996).Google Scholar
9. Su, X W., Song, H.W., Ciu, F.Z. and Li, W.Z., J. Phys. Condensed Matter 7, p.1517 (1995).Google Scholar
10. Wu, Z., Yu, Y. and Liu, X., Appl. Phys. Lett. 68, p.1291 (1996).Google Scholar
11. , Marton, Boyd, K.J., AI-Bayati, A.H., Todorov, S.S. and Rabalais, J.W., Phys. Rev. Lett. 73, p.118 (1994).Google Scholar