Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T14:56:18.960Z Has data issue: false hasContentIssue false

Synthesis and thermoelectric properties of antifluorite materials

Published online by Cambridge University Press:  01 February 2011

Xiunu Sophie Lin
Affiliation:
[email protected], University of South Florida, Department of Physics, 4202 East Fowler Ave, Tampa, FL, 33620-5700, United States, 813-974-8236
Dongli Wang
Affiliation:
[email protected], University of South Florida, Department of Physics, 4202 East Fowler Ave, Tampa, FL, 33620-5700, United States
Matthew Beekman
Affiliation:
[email protected], University of South Florida, Department of Physics, 4202 East Fowler Ave, Tampa, FL, 33620-5700, United States
George Nolas
Affiliation:
[email protected], University of South Florida, Department of Physics, 4202 East Fowler Ave, Ta mpa, FL, 33620-5700, United States
Get access

Abstract

The compounds Mg2X (where X=Si, Ge, Sn) crystallize in the antifluorite structure. They possess properties that are similar to that of the group IV elemental semiconductors thus they have long been recognized as good candidates for thermoelectric applications. In addition, their properties can be readily tuned by doping or alloying. However, optimal performance of these materials requires continued investigation. We present low-temperature transport properties measurements of Sb doped Mg2X. Structure-property relationships are reported while their thermoelectric properties are investigated systematically in order to elucidate their potential as thermoelectric materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yang, J., Hogan, T., Funahashi, R., and Nolas, G. S, in: Materials and Technologies for Direct Thermal-to-Electric Energy Conversion, MRS Symp. Proc. 886, (MRS, Warrendale, PA, 2006).Google Scholar
2. Nolas, G. S, Poon, J., and Kanatzidis, M., Mater. Res. Soc. Bull. 31, 199 (2006).Google Scholar
3. Ioffe, A. F in Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch Ltd., London, 1957),Google Scholar
4. Nolas, G. S, Sharp, J., and Goldsmid, H. J in Thermoelectrics: Basic Principles and New Materials Developments, (Springer, New York, 2001),Google Scholar
5. Zaitsev, V. K, Fedorov, M. I, Eremin, I. S, and Gurieva, E. A, in Thermoelectrics Handbook: Macro- to Nano-Structured Materials, Vol. 29 (CRC Press, Boca Raton, FL, 2006).Google Scholar
6. Winkler, U., Helv. Phys Acta 28, 633 (1955).Google Scholar
7. Martin, J. J., J. Phys. chem. Solids 33, 1139 (1972).Google Scholar
8. Morris, R. G, Redin, R. D, and Danielson, G. C, Phys. Rev. 109, 1909 (1958).Google Scholar
9. Redin, R. D, Morris, R. G, and Danielson, G. C, Phys. Rev. 109, 1916 (1958).Google Scholar
10. Lichter, B., J. Electrochem. Soc. 109, 819 (1962).Google Scholar
11. Zaitsev, V. K, Fedorov, M. I, Gurieva, E. A, Eremin, I. S, Konstantinov, P. P, Samunin, A. Y, and Vedernikov, M. V, Phys. Rev. B 74, 045207 (2006).Google Scholar
12. Tani, J. and Kido, H., Physica B 364, 218 (2005).Google Scholar
13. Tani, J. and Kido, H., Intermetallics 15, 1202 (2007).Google Scholar
14. Bolshakov, K. A, Bulonkov, N. A, Rastorguev, L. N, and Tsirlin, M. S, Russian J. Inorg. Chem. 8, 1418 (1963).Google Scholar
15. Bolshakov, K. A, Bulonkov, N. A, Rastorguev, L. N, Umanskii, Y. S, and Tsirlin, M. S, Russian J. Inorg. Chem. 8, 2710 (1963).Google Scholar
16. Bulyaev, N. A, Saharov, V. V, and Goggishuili, O. S, Inorg. Mater. (in Russian) 6, 1744 (1970).Google Scholar
17. Nolas, G. S, Wang, D., and Lin, X., Phys. Sta. Sol. (RRL) 1, 223 (2007).Google Scholar
18. Nolas, G. S, Wang, D., and Beekman, M., Phys. Rev. B (In Press).Google Scholar
19. Tritt, T. M in Thermal Conductivity: Theory, Properties, and Applications, (Kluwer Academic, New York, 2004),Google Scholar