Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:47:35.460Z Has data issue: false hasContentIssue false

Synthesis and Properties of Bulk Metallic Glasses in Pd-Ni-P and Pd-Cu-P Alloys

Published online by Cambridge University Press:  10 February 2011

Y. He
Affiliation:
Center for Materials Science, MS K-765, Los Alamos National Laboratory, Los Alamos, NM, 87545, U. S. A.
R. B. Schwarz
Affiliation:
Center for Materials Science, MS K-765, Los Alamos National Laboratory, Los Alamos, NM, 87545, U. S. A.
Get access

Abstract

Bulk amorphous Pd-Ni-P and Pd-Cu-P alloy rods with diameters ranging from 7 to 25 mm have been synthesized over a wide composition range using a fluxing technique. For most bulk amorphous Pd-Ni-P alloys, the difference ΔT = Tx - Tg between the crystallization temperature Tx and the glass transition temperature Tg is larger than 90 K, while for bulk amorphous Pd-Cu-P alloys, ΔT varies from 27 to 73 K. Pd40Ni40P20 has the highest glass formability, and 300-gram bulk amorphous cylinders, 25 mm in diameter and 50 mm in length, can be easily produced. This size, however, is not an upper limit. The paper presents the glass formation ranges for both ternary alloy systems and data on the thermal stability of the amorphous alloys, as well as their specific heat, density, and elastic properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Inoue, A., Zhang, T., and Masumoto, T., Mater. Trans. JIM, 31, 425 (1990).Google Scholar
2. Inoue, A., Kato, A., Zhang, T., Kim, S. G., and Masumoto, T., Mater. Trans. JIM, 32, 609 (1991).Google Scholar
3. Zhang, T., Inoue, A. and Masumoto, T., Mater. Trans. JIM, 32, 1005 (1991).Google Scholar
4. Inoue, A., Zhang, T., Nishiyama, N., Ohba, K. and Masumoto, Y., Mater. Trans. JIM, 34, 1234 (1993).Google Scholar
5. Peker, A. and Johnson, W. L., Appl. Phys. Lett. 63, 2342 (1993).Google Scholar
6. He, Y., Price, C. E., Poon, S. J. and Shiflet, G. J., Phil. Mag. Lett. 70, 371 (1994).Google Scholar
7. Lin, X. H. and Johnson, W. L., J. Appl. Phys. 78, 6514 (1995).Google Scholar
8. Chen, H. S., Acta Metali. 22, 1505 (1974).Google Scholar
9. Drehman, A. J., Greer, A. L., and Turnbull, D., Appl. Phys. Lett., 41, 716 (1982).Google Scholar
10. Kui, H. W., Greer, A. L., and Turnbull, D., Appl. Phys. Lett, 45, 615 (1984).Google Scholar
11. He, Y., Schwarz, R. B., and Archuleta, J. I., Appl. Phys. Lett., 69, 1861 (1996).Google Scholar
12. Schwarz, R. B. and He, Y., International Symposium on Metastable. Mechanically Alloyed and Nanocry'stalline Materials (ISMNAN-96), Rome, Italy, 20–24 May, 1996, in press.Google Scholar
13. He, Y. and Schwarz, R. B., preprint, Los Alamos National Laboratory, 1996.Google Scholar
14. Drehman, A. J. and Greer, A. L., Acta Metall., 32, 323 (1984).Google Scholar
15. He, Y. and Schwarz, R. B., unpublished results, Los Alamos National Laboratory, 1996.Google Scholar
16. Willnecker, R., Wittmann, K. and Gorier, G. P., J. Non-Cryst. Solids, 156–158, 450 (1993).Google Scholar
17. Inoue, A., Nishiyama, N., and Matsuda, T., Mater. Trans. JIM, 37, 181 (1996).Google Scholar
18. Turnbull, D., Contemp. Phys., 10, 473 (1969).Google Scholar
19. Davies, H. A., in Amorphous Metallic Alloys, edited by Luborsky, F. E. (Butterworths, Boston, 1983), pp. 825.Google Scholar
20. Somieski, B., Hulett, L., He, Y., and Schwarz, R. B., unpublished results, Oak Ridge and Los Alamos National Labs, 1996.Google Scholar
21. Migliori, A., Sarrao, J. L., Visscher, W. M., Beli, T. M., Lei, M., Fisk, Z., and Leisure, R. G., Physica B 183, 1 (1993).Google Scholar
22. Kuokkala, V. -T. and Schwarz, R. B., Rev. Sci. Instrum. 63, 3136 (1992).Google Scholar