Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:22:33.627Z Has data issue: false hasContentIssue false

Synthesis and luminescence properties of novel ZnO nanostructures: micro and nanospheres, polyhedral cages, tetra-pods, needles, tipped nanorods, nanowires and other “microphone–shaped” structures

Published online by Cambridge University Press:  01 February 2011

Aurangzeb Khan
Affiliation:
[email protected], Ohio University, Physics and astronomy, 251B Clippinger lab, athens, OH, 45701, United States, 740-597-1259, 740-593-0433
Wojciech M Jadwisienczak
Affiliation:
[email protected], Ohio University, School of Electrical Engneering and Computer Science, United States
Martin E Kordesch
Affiliation:
[email protected], Ohio University, Physics and astronomy, United States
Get access

Abstract

Novel ZnO nanostructures such as hollow nanospheres, nano-cages, nanoneedles, tetra-pods, nanowires, aligned nanorods and nanotubes are synthesized via thermal evaporation of ZnO and graphite powder mixtures in reduced oxygen atmosphere in the presence of argon and nitrogen flows. The ZnO nanostructures, especially nanospheres, have a unique shape and are hollow inside with walls densely decorated with aligned nanowires. Photoluminescence of synthesized ZnO structures measured at 300 K exhibits a strong near band edge peak at ∼380 nm and deep level green band centered at ∼550 nm. Fabricated ZnO structures can be studied for various applications in optoelectronics and sensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wu, Y., Yan, H., Yang, P., Chem. Eur. J. 8, 1260 (2002).Google Scholar
2. Khan, A. and Kordesch, M. E., Physica E, 30 5154, (2005).Google Scholar
3. Geng, B. Y., Xie, T. Peng, X. S., Lin, Y., Yuan, X. Y., Meng, G. W, and Zhang, L. D. Appl. Phys. A, 77, 363366 (2003).Google Scholar
4. Özgür, U., Alivov, Ya., Liu, C., Teke, A., Reshchikov, M., Dog-brevean, S., Avrutin, V., Cho, S.-J., Morkoc, H., J. Appl. Phys, 98, 041301 (2005).Google Scholar
5. Han, W. Q., Fan, S. S., Li, Q. Q., Hu, Y. D., Science 277, 1287 (1997).Google Scholar
6. Konenkamp, R., Boedecker, K., Lux-steiner, M. C., Poschenrieder, M., Zenia, F., Clement, C. L., Wagner, S., Appl. Phys. Lett. 77, 2575 (2000).Google Scholar
7. Kong, Y. C., Yu, D. P., Zhang, B., Fang, W. and Feng, S. Q., Appl. Phys. Lett. 78, 407 (2001).Google Scholar
8. Yamamoto, K., Nagasawa, K., Ohmori, T. Physica E 24 129132 (2004).Google Scholar
9. Ataev, B. M., Kamilov, I. K., Mamedov, V. V., Tech. Phys.Lett. 23, 842 (1997).Google Scholar
10. Shalish, I., Temkin, H. and Narayanamurti, V. phys. Rev. B 69, 245401 (2004).Google Scholar
11. Wang, Z. L. J.Phys. Condens. Matter 16, R829 (2004).Google Scholar
12. Jadwisienczak, W. M., Lozykowski, H. J., Xu, A. and Patel, B., J. Electr. Mat. 15 776 (2002).Google Scholar
13. Lyu, S. C., Zhang, Y., Lee, C. J., Ruh, H., and Lee, H. J., Chem. Mater. 15, 3294 (2003).Google Scholar
14. Vanhusden, K., Seager, C. H., Warren, W. L., Tallant, D. R. and Voigt, J. A., Appl. Phys. Lett. 68 403 (1995).Google Scholar
15. Dai, L., Chen, X.,Wang, W., Zhou, T. and Hu, B., J. Phys.: Condens. Matter 15, 2221 (2003).Google Scholar
16. Banerjee, D., Lao, J. Y., ZWang, D., Huang, J. Y, Steeves, D., Kimball, B. and Ren, Z. F., Nanotechnology 15 404 (2004).Google Scholar