Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-06T10:43:54.528Z Has data issue: false hasContentIssue false

Synthesis and Ferroelectric Properties of Sr- and Nb-codoped Bi4−xSrxTi3−xNbxO12 Thin Films by Sol-Gel Method

Published online by Cambridge University Press:  17 March 2011

Hirofumi Matsuda
Affiliation:
Smart Struct. Res. Center, Natnl. Inst. Adv. Indust. Sci. Tech. (AIST) 1-1-1 Umezono, Tsukuba 305-8568, Japan
Takashi Iijima
Affiliation:
Smart Struct. Res. Center, Natnl. Inst. Adv. Indust. Sci. Tech. (AIST) 1-1-1 Umezono, Tsukuba 305-8568, Japan
Hiroshi Uchida
Affiliation:
Dept. Chem., Sophia Univ., Tokyo 102-8554, Japan
Isao Okada
Affiliation:
Dept. Chem., Sophia Univ., Tokyo 102-8554, Japan
Takayuki Watanabe
Affiliation:
Dept. Innov. Eng. Mater., Tokyo Inst. Tech., Yokohama 226-8502, Japan
Hiroshi Funakubo
Affiliation:
Dept. Innov. Eng. Mater., Tokyo Inst. Tech., Yokohama 226-8502, Japan
Get access

Abstract

Ferroelectric Bi4Ti3O12 (BIT) thin films were modified by the substitution of Sr2+ ions for Bi3+ ions and of Nb5+ for Ti4+ (codoping) by spin-coating and decomposition of chemical solutions of metal-alkoxide materials (the nominal compositions of Bi4−xSrxTi3−xNbxO12 where x=0.0, 0.5, 1.0, 1.5). Single-phase thin films were crystallized above 550°C with BIT-type structure. The ferroelectric properties were found, though, with the values of Pr=10 μC/cm2 Ec=100 kV/cm, εr=300, and tanδ<5 % for Bi3.5Sr0.5Ti2.5Nb0.5O12 (x=0.5) annealed at 650 °C. Perhaps due to the lowering of the Curie temperature with increasing x, the maximum value of δr increased.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Park, B. H., Kang, B. S., Bu, S. D., Noh, T. W., Lee, J., and Jo, W., Nature 401, 682684 (1999).Google Scholar
2. Noguchi, Y., Miwa, I., Goshima, Y., and Miyayama, M., Jpn. J. Appl. Phys. 39, L1259–L1262 (2000).Google Scholar
3. Armstrong, R. A. and Newnham, R. E., Mat. Res. Bull. 7, 10251034 (1972).Google Scholar
4. Du, X. and Chen, I-W., J. Am. Ceram. Soc. 81, 32533259 (1996).Google Scholar
5. Shimakawa, Y., Kubo, Y., Tauchi, Y., Asano, H., Kamiyama, T., Izumi, F., Hiroi, Z., Appl. Phys. Lett. 79, 27912793 (2001).Google Scholar