Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:34:56.226Z Has data issue: false hasContentIssue false

Synthesis and electrochemical properties of mesostructured 12-phosphotungstic acid thin films with hierarchical structures by triblock copolymer templating

Published online by Cambridge University Press:  01 February 2011

Hui-suk Yun
Affiliation:
Department of Materials Science, Graduate School of Engineering, University of Tokyo, 7–3–1, Hongo, Bunkyo-ku, Tokyo, 113–8656, Japan
Makoto Kuwabara
Affiliation:
Department of Materials Science, Graduate School of Engineering, University of Tokyo, 7–3–1, Hongo, Bunkyo-ku, Tokyo, 113–8656, Japan
Haoshen Zhou
Affiliation:
National Institute of Advanced Industrial Science and Technology(AIST), Tsukuba Central 2, Energy Electronics Institute, 1–1–1, Umezono, Tsukuba, Ibaraki, 305–8568, Japan
Itaru Honma*
Affiliation:
Department of Materials Science, Graduate School of Engineering, University of Tokyo, 7–3–1, Hongo, Bunkyo-ku, Tokyo, 113–8656, Japan
*
Get access

Abstract

Hexagonally mesostructured 12-phosphotungstic acid (PWA) thin films with both large pore size and hierarchical structures have been successfully prepared by using triblock copolymer templates for the first time. The films is composed by three kind of structures; PWA Keggin anion, monoclinic crystal structure consisting of PWA Keggin anion and organic part (hydrophilic component) of block copolymers, and the hexagonal mesostructure of self-arrayed PWA and block copolymers. The calcined PWA films show better electrochemical properties such as a faster faradic processes and larger specific capacity than normal P WA clusters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Berzelius, J., Pogg. Ann., 1926, 6, 369, 380 Google Scholar
2. Misono, M., Catal. Rev. Sci. Eng. 1987, 29, 269: 1988, 30, 339Google Scholar
3. Okuhara, T., Mizuno, N., Adv. Catal. 1996, 41, 113 Google Scholar
4. Hill, C. L., Chem. Rev. 1998, 98, 1 Google Scholar
5. Essayem, N., Coudurier, G., Fournier, M., Védrine, J. C., Chem. Lett. 1995, 34, 223 Google Scholar
6. Stein, A., Fendorf, M., Jarvie, T. P., Mueller, K. T., Benesi, A. J., Mallouk, T. E., Chem. Mater. 1995, 7, 304 Google Scholar
7. Janauer, G. G., Dobley, A., Guo, J., Zavalij, P., Whittingham, M. S., Chem. Mater. 1996, 8, 2096 Google Scholar
8. Taguchi, A., Abe, T., Iwamatom, M., Adv. Mater, 1998, 10, 9 Google Scholar
9. Yun, H. S., Miyazawa, K., Zhou, H.S., Honma, I., Kuwabara, M., Adv. Mater. 2001, 13, 1377 Google Scholar
10. Yun, H. S., Zhou, H.S., Kuwabara, I. M., Honma, I., submitted in Langmuir, 2003 Google Scholar
11. Yun, H. S., Zhou, H.S., Kuwabara, I. M., Honma, I., submitted in Mater. Chem. 2003 Google Scholar
12. Zavalij, P., Guo, J., Whittingham, M. S., Jacobson, R. A., Pecharsky, V., Bucher, C. K., Hwu, S. J., J. Solid State Chem. 1996, 123, 83 Google Scholar
13. Patil, P. R., Rawar, S. H., Patil, P. S., Solid State Ionics, 2000, 136–137, 505 Google Scholar
14. Kavan, L., Attia, A., Lenzmann, F., Elder, S. H., Grätzel, M., J. ElectroChem. Soc. 2000, 147, 2897 Google Scholar
15. Santato, C., Odziemkowski, M., Ulmann, M., Augustynski, J., J. Am. Chem. Soc. 2001, 123, 10639 Google Scholar
16. Ozkan, E., Lee, S. H., Liu, P., Tracy, C. E., Tepehan, F. Z., Pitts, J. R., Deb, S. K., Solid State Ionics, 2002, 149, 139 Google Scholar
17. Cheng, W., Baudrin, E., Dunn, B., Zink, J. I., J. Mater. Chem. 2001, 11, 92 Google Scholar