No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
A capillary-enforced template-based method is described for the preparation of InVO4 nanotube arrays. Nanotube arrays of InVO4 were prepared by filling the InVO4 sol into pores of polycarbonate membranes and pyrolyzing through sintering. Another type of InVO4 nanotube arrays (InVO4/acac) are obtained from the sol with the addition of acetylene acetone (acac). For comparison purposes, InVO4 films were prepared by drop casting from InVO4 same sol. Films and the two types of nanotube arrays of InVO4 annealed at 500°C consist of mixed monoclinic (InVO4-I) and orthorhombic (InVO4-III) phases. Scanning electron microscopy (SEM) characterizations indicate that the nanotubes are well-aligned, perpendicular to substrate surface with the outer diameter of ~200 nm for short InVO4 nanotubes and ~170 nm for long InVO4 nanotubes. Chronopotentiometry results reveal that InVO4/acac nanotube array has the highest charge capacity (790 mAh/g), followed by InVO4 nanotube array (600 mAh/g) then InVO4 film (290 mAh/g). Such enhanced lithium-ion intercalation properties are ascribed to the large surface area and short diffusion distance offered by nanostructures and amorphisation caused by acetylene acetone in the case of InVO4/acac nanotube arrays.