Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:50:04.719Z Has data issue: false hasContentIssue false

Synthesis and Electrochemical Performance of SnO2/Graphene Hybrid Anode for Lithium Ion Batteries

Published online by Cambridge University Press:  06 September 2013

Chia-Yi Lin
Affiliation:
Department of Chemical Engineering and Materials Science, Yuan Ze University, Taiwan
Chien-Te Hsieh
Affiliation:
Department of Chemical Engineering and Materials Science, Yuan Ze University, Taiwan
Ruey-Shin Juang
Affiliation:
Department of Chemical Engineering and Materials Science, Yuan Ze University, Taiwan
Get access

Abstract

An efficient microwave-assisted polyol (MP) approach is report to prepare SnO2/graphene hybrid as an anode material for lithium ion batteries. The key factor to this MP method is to start with uniform graphene oxide (GO) suspension, in which a large amount of surface oxygenate groups ensures homogeneous distribution of the SnO2 nanoparticles onto the GO sheets under the microwave irradiation. The period for the microwave heating only takes 10 min. The obtained SnO2/graphene hybrid anode possesses a reversible capacity of 967 mAh g-1 at 0.1 C and a high Coulombic efficiency of 80.5% at the first cycle. The cycling performance and the rate capability of the hybrid anode are enhanced in comparison with that of the bare graphene anode. This improvement of electrochemical performance can be attributed to the formation of a 3-dimensional framework. Accordingly, this study provides an economical MP route for the fabrication of SnO2/graphene hybrid as an anode material for high-performance Li-ion batteries.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Huang, X., Zeng, Z. Y., Fan, Z. X., Liu, J. Q. and Zhang, H., Adv. Mater. 24, 5979 (2012).CrossRefGoogle Scholar
Huang, X., Qi, X. Y., Boey, Freddy and Zhang, H., Chem. Soc. Rev. 41, 666 (2012).CrossRefGoogle Scholar
Huang, X., Yin, Z. Y., Wu, S. X., Qi, X. Y., He, Q. Y., Zhang, Q. C., Yan, Q. Y., Boey, Freddy and Zhang, H., Small 7, 1876 (2011).CrossRefGoogle ScholarPubMed
Guo, P., Song, H. and Chen, X., Electrochem. Commun. 11, 1320 (2009).CrossRefGoogle Scholar
Lian, P., Zhu, X., Xiang, H., Li, Z., Yang, W. and Wang, H., Electrochim. Acta 56, 834 (2010).CrossRefGoogle Scholar
Wang, X., Zhou, X., Yao, K., Zhang, J. and Liu, Z., Carbon 49, 133 (2011).CrossRefGoogle ScholarPubMed
Han, D. M., Guo, Z. P., Zeng, R., Kim, C. J., Meng, Y. Z. and Liu, H. K., Int. J. Hydrogen Energy 34, 2426 (2009).CrossRefGoogle Scholar
Chen, W., Zhao, J., Lee, J. Y. and Liu, Z., Mater. Chem. Phys. 91, 124 (2005).CrossRefGoogle Scholar
Liu, Z., Ling, X. Y., Su, X. and Lee, J. Y., J. Phys. Chem. B 108, 8234 (2004).CrossRefGoogle Scholar
Hsieh, C. T., Hung, W. M., Chen, W. Y. and Lin, J. Y., Int. J. Hydrogen Energy 36, 2765 (2011).CrossRefGoogle Scholar
Hummers, W. S. Jr. and Offeman, R. E., J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
Zhou, X., Huang, X., Qi, X., Wu, S., Xue, C., Boey, F. Y. C., Yan, Q., Chen, P. and Zhang, H., J. Phys. Chem. C 113, 10842 (2009).CrossRefGoogle Scholar
Wang, Z. Y., Ahang, H., Li, N., Shi, Z., Gu, Z. N. and Cao, G. P., Nano Res. 3, 748 (2010).CrossRefGoogle Scholar
Paek, S. M., Yoo, E. J. and Honma, I., Nano Lett. 9, 72 (2009).CrossRefGoogle Scholar
Yao, J., Shen, X. P., Wang, B., Liu, H. K. and Wang, G. X., Electrochem. Commun. 11, 1849, 2009.Google Scholar
Du, Z. F., Yin, X. M., Zhang, M., Hao, Q. Y., Wang, Y. G. and Wang, T. H., Mater. Lett. 64, 2076, 2010.Google Scholar