Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T08:14:01.963Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Supported Metal Cluster Catalysts with Well-Defined Structures

Published online by Cambridge University Press:  15 February 2011

B. C. Gates*
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616
Get access

Abstract

Nearly uniform supported metal clusters are the focus of this summary, which addresses their synthesis, characterization, and catalytic properties. Supported clusters represented as Ir4 and Ir6 were prepared on MgO powder by thermal decarbonylation of [HIr4(CO)11] and [Ir6(CO)15]2−, respectively. The most useful characterization technique for supported clusters is extended X-ray absorption fine structure spectroscopy, but the structure data are limited by the precision of the coordination numbers (about ±20%). Ir4 and Ir6 clusters on supports catalyze hydrogenation of cyclohexene and of toluene, and they are catalytically distinct from larger iridium particles, although the reactions are structure insensitive (proceeding at about the same rate per exposed metal atom) when catalyzed by metal particles larger than about 1 nm. Thus the concept of structure insensitivity does not extend to supported metal clusters, which are regarded as quasi molecular.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Boudart, M. J. Mol. Catal. 1985, 30, 27.Google Scholar
(2) Gates, B. C.; Lamb, H. H., J. Mol. Catal. 1989, 52, 1.Google Scholar
(3) Gates, B. C.; Guczi, L.; Knözinger, H., Eds., Metal Clusters in Catalysis, Elsevier, Amsterdam, 1986.Google Scholar
(4) Iwasawa, Y. Catal. Today 1993, 18, 21.Google Scholar
(5) Ichikawa, M. Adv. Catal. 1992, 38, 283.Google Scholar
(6) Gates, B. C. J. Mol. Catal. 1994, 86, 95.Google Scholar
(7) Psaro, R.; Ugo, R.; Zanderighi, G. M.; Besson, B.; Smith, A. K.; Basset, J.-M. J. Organomet. Chem 1981, 213,215.Google Scholar
(8) Deeba, M.; Gates, B. C. J. Catal. 1981,67, 303.Google Scholar
(9) Knozinger, H.; Zhao, Y. J. Catal. 1981, 71, 337.Google Scholar
(10) Psaro, R.; Dossi, C.; Fusi, A.; Ugo, R. Res. Chem. Intermed. 1991, 15, 31.Google Scholar
(11) Hsu, L.-Y.; Shore, S. G.; D'Ornelas, L.; Choplin, A.; Basset, J.-M. J. Catal. 1994, 149, 159.Google Scholar
(12) Krause, T. R.; Davies, M. E.; Lieto, J.; Gates, B. C. J. Catal. 1985, 94, 195.Google Scholar
(13) Kawi, S.; Gates, B. C., Jnorg. Chem. 1992,31, 2939.Google Scholar
(14) Lamb, H. H.; Fung, A. S.; Tooley, P. A.; Puga, J.; Krause, T. R.; Kelley, M. J.; Gates, B. C. J. Am. Chem. Soc. 1989, 111,8367.Google Scholar
(15) Xu, Z.; Kawi, S.; Gates, B. C. Inorg. Chem. 1994, 33, 503.Google Scholar
(16) Puga, J.; Patrini, R.; Sanchez, K. M.; Gates, B. C. Inorg. Chem. 1991, 30, 2479.Google Scholar
(17) Xu, Z.; Rheingold, A.; Gates, B. C. J. Phys. Chem. 1993, 97, 9465.Google Scholar
(18) Kawi, S.; Chang, J.-R.; Gates, B. C., J. Phys. Chem. 1993,97, 5375.Google Scholar
(19) Dossi, C.; Psaro, R.; Roberto, D.; Ugo, R.; Zanderighi, G. M. lnorg. Chem. 1990, 29,4368.Google Scholar
(20) Kawi, S.; Chang, J.-R; Gates, B. C. J. Phys. Chem. 1993,97, 10599.Google Scholar
(21) Kawi, S.; Chang, J.-R; Gates, B. C. 1. Am. Chem. Soc. 1993, 115, 4830.Google Scholar
(22) Kawi, S.; Chang, J.-R; Gates, B. C. to be published.Google Scholar
(23) Xu, Z.; Xiao, F-S.; Purnell, S. K.; Alexeev, O., Kawi, S.; Deutsch, S. E.; Gates, B. C. Nature (London), 1994, 372, 346.Google Scholar
(24) van Zon, F. B. M.; Maloney, S. E.; Gates, B. C.; Koningsberger, D. C. J. Am. Chem. Soc. 1993, 115, 10317.Google Scholar
(25) Chang, J.-R.; Koningsberger, D. C.; Gates, B. C. J. Am. Chem. Soc., 1992, 114, 6460.Google Scholar
(26) Lamb, H. H.; Wolfer, M.; Gates, B. C., I Chem. Soc., Chem. Commun. 1990, 1296.Google Scholar
(27) Beutel, T.; Kawi, S.; Purnell, S. K.; Knozinger, H.; Gates, B. C. J. Phys. Chem. 1993,97, 7284.Google Scholar
(28) Xiao, F.-S.; Alexeev, O.; Gates, B. C., 1. Phys. Chem., in press.Google Scholar
(29) Eberhardt, W.; Fayet, P.; Cox, D.; Kaldor, A.; Sherwood, R.; Sondericker, D. Physica Scripta, 1990, 41,892.Google Scholar
(30) Roy, H. V.; Fayet, P.; Patthey, F.; Schneider, W. D.; Delly, B.; Massobrio, C. Phys. Rev. B, 1994, 49,5611.Google Scholar
(31) Koningsberger, D. C.; Prins, R., Eds. X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES Wiley, New York, 1988.Google Scholar
(32) Gates, B. C.; Koningsberger, D. C. CHEMTECH 1992, 22, 300.Google Scholar
(33) Maloney, S. D.; van Zon, F. B. M.; Koningsberger, D. C.; Gates, B. C. Catal. Lett. 1990, 5, 161.Google Scholar
(34) Kawi, S.; Chang, J.-R.; Gates, B. C. J. Phys. Chem., in press, 1994.Google Scholar
(35) Triantafillou, N. D.; Gates, B. C. 1. Phys. Chem. 1994,98, 8431.Google Scholar
(36) Asakura, K.; Iwasawa, Y. J. Chem. Soc. Faraday Trans. 1990,86, 2657.Google Scholar
(37) Fung, A. S.; Tooley, P. A.; Kelley, M. J.; Koningsberger, D. C.; Gates, B. C. J. Phys. Chem. 1991,95,225.Google Scholar
(38) Lamb, H. H.; Wolfer, M.; Gates, B. C. J. Chem. Soc., Chem. Commun. 1990, 1296.Google Scholar
(39) Purnell, S. K.; Xu, X.; Goodman, D. W.; Gates, B. C. J. Phys. Chem. 1994, 98,4076.Google Scholar
(40) Ravenek, W.; Jansen, A. P. J.; van Santen, R. A. J. Phys. Chem. 1989,93, 6445.Google Scholar
(41) Maloney, S. D.; Kelley, M. J.; Koningsberger, D. C.; Gates, B. C. J. Phys. Chem. 1991, 95, 9406.Google Scholar
(42) Gates, B. C. Chem. Rev., submitted.Google Scholar