Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:26:02.388Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Polyurethane Scaffolds for Biomedical Applications

Published online by Cambridge University Press:  01 February 2011

M.C. Chavarría-Gaytán
Affiliation:
Departamento de Ciencias Básicas, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Chih. México. C.P. 32310
I. Olivas-Armendáriz
Affiliation:
Departamento de Ciencias Básicas, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Chih. México. C.P. 32310 Centro de Investigación de Materiales Avanzados S.C., Chihuahua, México, C.P. 31109
P.E. García-Casillas
Affiliation:
Departamento de Ciencias Básicas, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Chih. México. C.P. 32310
A. Martínez-Villafañe
Affiliation:
Centro de Investigación de Materiales Avanzados S.C., Chihuahua, México, C.P. 31109
C. A. Martínez-Pérez
Affiliation:
Departamento de Ciencias Básicas, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Chih. México. C.P. 32310
Get access

Abstract

Polyurethanes are interesting materials that can be used in biomedical applications for regeneration of bone tissue. In this work the synthesis and characterization of porous polyurethanes to act as scaffold is performed by a thermally induced phase separation technique. The appropriate parameters are determined in order to obtain a porous well interconnected material. Characterization by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) is made in order to determine the thermal stability of the material. Chemical characterization is made by Fourier transformed infrared spectroscopy with attenuated total reflectance (FTIR-ATR). The morphology of the material is observed by a field emission scanning electron microscope (FESEM) and the mechanical properties are measured by dynamic mechanical analysis (DMA).

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Agarwal, S., Gassner, R., Piesco, N.P., Anta, S. R. in Tissue Engineering and Biodegradable Equivalentes, edited by Lewandroski, K., Wise, D.L., Trantolo, D.J., Gresser, J.D., Yaszemski, M.J. and Altobelli, D.E., Marcel Kekker, Inc. (2002), pp.123135.Google Scholar
[2] Rezwan, K., Chen, Q.Z., Blaker, J.J., Boccaccini, A.R.: Biomaterials 27 p. 343 (2006)Google Scholar
[3] Martínez, A., Casillas, P.E., Martínez Villafañe, A. and Romero-García, J., Journal of Advanced Materials Sp. Ed. 1, 5 (2006).Google Scholar
[4] Williamson, M.R: and Coombes, A.G.A., Biomaterials, 25, 459 (2004).Google Scholar
[5] Hutchmacher, D.W., Biomaterials,. 21, 2529 (2000)Google Scholar
[6] Choand, H., An, J-., Biomaterials, 27, 544 (2006).Google Scholar
[7] deGroot, J.H., J.H., , Nijennhuis, A.J:., Bruin, P.., Pennings, A.J.., Veth, R.P.H.., Klompmaker, J.. and Jansen, H.W.B., Colloid and Polymer Science, 268, 1073 (1990)‥Google Scholar
[7] Chattopadhyay, D.K., Mishra, A.K. and Sreedhar, B., Raju, K.V:S.N:: Polymer Dedradationand Stability, 91, 1837 (2006).Google Scholar
[8] Gorna, K. and Gogolewsli, S. Polymer Degradation and Stability, 79, 113 (2002)‥Google Scholar
[9] Berta, M., Lindsay, C., Pansand, G., Camino, G.: Polymer Degradation and Stability 91, 1179 (2006).Google Scholar
[10] Duquesne, S., Le Bras, M., Bourbigot, S., Delobel, R., Caminio, G., Eling, B., Lindsay, C. and Roels, T.: Polymer Degradation and Stability,. 74, 493 (2001)‥Google Scholar