Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:43:44.838Z Has data issue: false hasContentIssue false

Synthesis and Characterization of PbTiO3 Thin Films Grown by Chemical Beam Deposition

Published online by Cambridge University Press:  25 February 2011

K.Y. Hsieh
Affiliation:
Department of Materials Science and EngineeringNorth Carolina State University, Raleigh, NC 27695
S.H. Rou
Affiliation:
Department of Materials Science and EngineeringNorth Carolina State University, Raleigh, NC 27695
L.L.H. King
Affiliation:
Department of Materials Science and EngineeringNorth Carolina State University, Raleigh, NC 27695
A.I. Kingon
Affiliation:
Department of Materials Science and EngineeringNorth Carolina State University, Raleigh, NC 27695
Get access

Abstract

A new deposition technique for PbTiO3 films utilizing chemical beams of metalorganic sources in an ultrahigh vacuum chamber is demonstrated. Ozone is introduced to provide a source of active oxygen. The role of active oxygen in controlling the surface chemical reactions is discussed. Fine grained, single phase PbTiO3 films have been deposited on MgO (100) and SiO2/Si substrates at substrate temperatures as low as 350°C. Films were characterized by XRD, SEM, and TEM. The results suggest that the chemical beam deposition technique provides another method for the fabrication and integration of ferroelectric thin films with silicon (or GaAs) devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Okuyama, M., Matsui, U., Seto, H. and Hamakawa, Y., Jpn. J. Appl. Phys. 20, 315 (1981).Google Scholar
2 Okuyama, M. and Hamakwa, Y., Ferroelectrics 63, 263 (1985).Google Scholar
3. Kojima, M., Sunagawa, M., Seto, H., Matsui, Y. and Hamakwa, Y., Jpn. J. Phys. 22, 465 (1985).Google Scholar
4 Scott, J.E. and Araujo, C.A. Paz de, Science 246, Nov. 1400 (1989).Google Scholar
5. Wu, W.Y., IEEE Trans. Electron. Devices, ED–21, 499 (1974).Google Scholar
6. Wu, S.Y., Ferroelectrics, 11, 379 (1976).Google Scholar
7. Nagatomo, T. and Omoto, O., Jpn. J. Appl. Phys., 26 11 (1987).Google Scholar
8. Oikawa, M. and Toda, H., Appl. Phys. Lett. 29, 491 (1976).Google Scholar
9. Adachi, M., Matsuzaki, T., Yamada, T., Shiosake, T. and Kawabata, A., Jpn. J. Appl. Phys. 26, 550 (1987).Google Scholar
10 Dharmadhiksri, V.S. snd Grannemann, W.W., J. Appl. Phys., 53, 8988 (1982).Google Scholar
11 Okada, M., Tominaga, K., Araki, T., Katayama, S. and Sakashita, Y., Jpn. J. Appl. Phys., 22, 718 (1990).Google Scholar
12. Tamane, H., Masumoto, H., Hirai, T., Lwasaki, H., Watanabe, K., Kobayshi, N., Muta, Y. and Kurosawa, H., Appl. Phys. Lett., 53, 1548 (1988).Google Scholar
13. Ameen, M.S., Graettinger, T.M., Auciello, O., Rou, S.H. and Kingon, A.I., MRS Symposium 152, 175 (1989).Google Scholar
14. Bade, J.P., Baker, E.A., Kingon, A.I., Davis, R.F. and Bachmann, K.J., J. Vacuum Sci. and Technology. B8(2), 237 (March/April 1990).Google Scholar
15. Rou, S.H., Hren, P.D., Kingon, A.I., MRS meeting Spring 1990, San Francisco.Google Scholar