Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T09:47:12.807Z Has data issue: false hasContentIssue false

Synthesis and Characterization of MoS2 Thin Films Grown by Pulsed Laser Evaporation

Published online by Cambridge University Press:  28 February 2011

M. S. Donley
Affiliation:
AFWAL/MLBM, Materials Laboratory, Wright-Patterson AFB, OH 45433
P. T. Murray
Affiliation:
Research Institute, University of Dayton, Dayton, OH 45469
N. T. McDevitt
Affiliation:
AFWAL/MLBM, Materials Laboratory, Wright-Patterson AFB, OH 45433
Get access

Abstract

The growth and characterization of MoS thin films grown by pulsed laser evaporation is investigated. TOF anafysis of the ions evaporated from an MoS2 target indicates that PLE results primarily in the evaporation of atomic Mo and S species; MoxSy clusters were also detected, but were present at a significantly Iower intensity. TOF velocity analysis indicates an effective plasma temperature of 1500K. Stoichiometric MoS2 films were grown at substrate temperatures between room temperature and 500ºC under the above laser conditions. XPS data is used to develop a Wagner chemical state plot. Analysis of the films by Raman spectroscopy and glancing angle x-ray diffraction indicates the films to be crystalline, hexagonal MoS2, with a tendency for basal plane orientation parallel to the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Donley, M. S., Murray, P. T., Grant, J. T., McDevitt, N. T., and Haas, T. W., Thin Solid Films, to be published.Google Scholar
2. Donley, M. S., Murray, P. T., Barber, S. A. and Haas, T. W., Surface and Coatings Technology, to be published.Google Scholar
3. Murray, P. T., Wolf, J. D., Mescher, J. A., Grant, J. T., and McDevitt, N. T., Mater. Lett. 5, 250 (1987).Google Scholar
4. Mamyrin, B. A., Krataev, V. I., Shmikk, D. V., and Zagulin, V. A., Zh. Eksp. Teor. Fiz. 64, 8 (1973); Sov. Phys.-JETP 37, 45 (1973).Google Scholar
5. Mills, K. C., Thermodynamic Data for Inorqanic Sulphides, Selenides, and Tellurides (Butterworths, London, 1974).Google Scholar
6. Powder Diffraction Files: Sets 23 to 24, International Centre for Diffraction Data, Swarthmore, PA, 1983, No. 24–515, p. 656.Google Scholar
7. Bagnall, A. G., Liang, W. Y., Marseglia, E. A., and ber, B. Wel, Physica 99B, 343 (1980).Google Scholar
8. Verble, J. L. and Weiting, T. J., Phys. Rev. Letters 25, 362 (1970).Google Scholar
9. Weiting, T. J. and Verble, J. L., Phys. Rev. B3, 4286 (1971).Google Scholar
10. Wagner, C. D. and Biloen, P., Surf. Sci. 35, 82 (1973).Google Scholar
11. Wagner, C. D., Faraday Discuss. Chem. Soc. 60, 291 (1975).Google Scholar
12. Wagner, C. D., J. Electron. Spectros. Relat. Phenom. 10, 305 (1977).CrossRefGoogle Scholar
13. Wagner, C. D., Zatko, D. A., and Raymond, R. H., Anal. Chem. 52, 1445 (1980).Google Scholar
14. Wagner, C. D. et al. , J. Vac. Sci. Technol. 21 (1982).Google Scholar
15. Pederson, L. R., J. Electron Spectrosc. Relat. Phenom. 28, 203 (1982).Google Scholar