Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T14:15:39.576Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Hybrid Materials Obtained Through Hydrolysis of Alkoxysilanes and Vanadium Alkoxides

Published online by Cambridge University Press:  10 February 2011

B. Alonso
Affiliation:
Chimie de la Matière Condensée UMR CNRS 7574 - Université Pierre et Marie Curie 4 place Jussieu, 75252 Paris cedex 05, France - [email protected]
J. Maquet
Affiliation:
Chimie de la Matière Condensée UMR CNRS 7574 - Université Pierre et Marie Curie 4 place Jussieu, 75252 Paris cedex 05, France - [email protected]
B. Viana
Affiliation:
Chimie de la Matière Condensée UMR CNRS 7574 - Université Pierre et Marie Curie 4 place Jussieu, 75252 Paris cedex 05, France - [email protected]
C. Sanchez
Affiliation:
Chimie de la Matière Condensée UMR CNRS 7574 - Université Pierre et Marie Curie 4 place Jussieu, 75252 Paris cedex 05, France - [email protected]
Get access

Abstract

New hybrid materials made of polydimethylsiloxane species (chains and cyclic species) crosslinked at the molecular level by O=V(O-)3 units with a very high degree of homogeneity and dispersion even for a V/Si ratio of 10% have been synthesized and characterized mainly by 29Si, 51V MAS NMR, DSC and DMA. The structure of these hybrids is very different from those proposed for the other dimethylsiloxane-transition metal oxide systems. These dimethylsiloxanevanadates copolymers exhibit higher glass transition temperatures than usual PDMS and a very sharp variation of the loss factor tanδ. These hybrid materials exhibit at low temperature a strong phosphorescence usually associated to a Ligand to Metal Charge Transfrer process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1a. Wilkes, G. L., Orler, B., Huang, H.-H., Polymer Prep., 26, 300, 1985.Google Scholar
1b. Huang, H.-H., Orler, B., Wilkes, G. L., Macromolecules, 20, 1322, 1987.10.1021/ma00172a026Google Scholar
2a. Sur, G. S., Mark, J. E., Eur. Polym. J., 21, 1051, 1985.10.1016/0014-3057(85)90213-7Google Scholar
2b. Mark, J. E., Sullivan, J. L., J. Chem. Phys., 66, 1006, 1977.10.1063/1.434056Google Scholar
2c. Andrady, A. L., Llorente, M. A., Mark, J. E., J. Chem. Phys., 72, 2282, 1980.10.1063/1.439472Google Scholar
3a. Diré, S., Babonneau, F., Sanchez, C., Livage, J., J. Mater. Chem., 2, 239, 1992.10.1039/JM9920200239Google Scholar
3b. Babonneau, F., Polyhedron, 13, 1123, 1994.10.1016/S0277-5387(00)80249-1Google Scholar
4a. Better Ceramics Through Chemistry VII: Organic/Inorganic Hybrid Materials, Coltrain, B. K., Sanchez, C., Schaefer, D. W., Wilkes, G. L., Mater. Res. Soc. Symp. Proc., 435, 1996.Google Scholar
4b. Sol-Gel Optics IV, Mackenzie, J. D., Pope, E. J. A., Schmidt, H. K., Yamane, M., SPIE, 3136, 1997.Google Scholar
5a. Che, M., Canosa, B., Gonzalez-Elipe, A. R., J. Phys. Chem., 90, 618, 1986.10.1021/j100276a027Google Scholar
5b. Eckert, H., Wachs, I. E., J. Phys. Chem., 93, 6796, 1989.10.1021/j100355a043Google Scholar
5c. Sayari, A., Chem. Mater., 8, 1840, 1996.10.1021/cm950585+Google Scholar
6 Sanchez, C., Alonso, B., Chapusot, F., Ribot, F., Audebert, P., J. Sol-Gel Sci. Tech., 2, 161, 1994.10.1007/BF00486233Google Scholar
7 Feher, F. J., Walzer, J. F., Inorg. Chem., 30, 1689, 1991.10.1021/ic00008a005Google Scholar
8 Liquid NMR characterization of VO(OSiMe3)3. 17O: δ=336 ppm (V-O-Si,J2 o-v = 110 Hz), δ=1152 ppm (V=O,J2 o-v=60 Hz). 29Si : δ=24.5 ppm (V=O,J2 o-v=13 Hz). 51V : δ=-711 ppm.Google Scholar
9 Pope, M. T., Heteropoly and Isopoly Oxometalates, Springer-Verlag, 1983.10.1007/978-3-662-12004-0Google Scholar
10 Alonso, B., Sanchez, C., Forthcoming publication.Google Scholar
11a. Gritscov, A. M., Shvets, V. A., Kazansky, V. B., Chem. Phys. Lett., 35, 511, 1975.10.1016/0009-2614(75)85654-5Google Scholar
11b. Anpo, M., Sunamoto, M., Che, M., J. Phys. Chem., 93, 1187, 1989.10.1021/j100341a006Google Scholar
11c. Stiegman, A. E., Eckert, H., Plett, G., Kim, S. S., Anderson, M., Yavrouian, A., Chem. Mater., 5, 1591, 1993.10.1021/cm00035a001Google Scholar
12 Ronde, H., Blasse, G., J. Inorg. Nucl. Chem., 40, 215, 1978.10.1016/0022-1902(78)80113-4Google Scholar
13 Iwamoto, M., Furukawa, H., Matsukami, K., Takenaka, T., Kagawa, S., J. Am. Chem. Soc., 105, 3719, 1983.10.1021/ja00349a066Google Scholar
14 Tran, K., Hanning, M. A.-Lee, Biswas, A., Stiegman, A. E., Scott, G. W., J. Am. Chem. Soc., 117, 2618, 1995.10.1021/ja00114a026Google Scholar
15 Ziegler, T., Rauk, A., Chem. Phys., 16, 209, 1976.10.1016/0301-0104(76)80056-0Google Scholar
16 Surivet, F., Lam, T. M., Pascault, J.-P., Mai, C., Macromolecules, 25, 5742, 1992.10.1021/ma00047a027Google Scholar
17 Clarson, S. J., Dogson, K., Semlyen, J. A., Polymer, 26, 930, 1985.10.1016/0032-3861(85)90140-5Google Scholar
18 Clarson, S. J., Mark, J. E., Dogson, K., Polym. Commun., 29, 208, 1988.Google Scholar
19 Andrady, A. L., Llorente, M. A., Mark, J. E., Polym. Bull., 26, 357, 1991.10.1007/BF00587981Google Scholar
20 Andrady, A. L., Sefcik, M. D., J. Polym. Sci., Polym. Phys., 22, 237, 1984.10.1002/pol.1984.180220208Google Scholar