Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-18T14:15:14.380Z Has data issue: false hasContentIssue false

Swift Heavy Ion Irradiation Induced Effects in Si/SiOx Multi-Layered Films and Nanostructures

Published online by Cambridge University Press:  31 January 2011

Jurgen W Gerlach
Affiliation:
[email protected], Leibniz-Institute of Surface Modification (IOM), Ion Beam Technology, Permoserstrasse 15, Leipzig, Saxonia, D-04318, Germany, +493412353310
C. Patzig
Affiliation:
[email protected], Leibniz-Institut für Oberflächenmodifizierung, Leipzig, Germany
W. Assmann
Affiliation:
[email protected], LMU München, MLL, Garching, Germany
A. Bergmaier
Affiliation:
[email protected], Universität der Bundeswehr München, Neubiberg, Bavaria, Germany
Th. Höche
Affiliation:
[email protected], Leibniz-Institut für Oberflächenmodifizierung, Leipzig, Saxonia, Germany
J. Zajadacz
Affiliation:
[email protected], Leibniz-Institut für Oberflächenmodifizierung, Leipzig, Germany
R. Fechner
Affiliation:
[email protected], Leibniz-Institut für Oberflächenmodifizierung, Leipzig, Saxonia, Germany
Bernd Rauschenbach
Affiliation:
[email protected], Leibniz-Institut für Oberflächenmodifizierung, Leipzig, Germany
Get access

Abstract

Amorphous Si/SiOx multi-layered films and nanostructures were deposited on Si substrates by the glancing angle deposition technique using Ar ion beam sputtering of a Si sputter target in an intermittent oxygen atmosphere at room temperature. The chemical composition of the samples was characterized by time-of-flight secondary ion mass spectrometry, as well as - for quantifying these first results - by elastic recoil detection analysis using a 200 MeV Au ion beam. The latter method was found to lead to a significant alteration of the sample morphology, resulting in the formation of complex nanometric structures within the layer stacks. In order to investigate these swift heavy ion irradiation induced effects in more detail, a series of experiments was conducted to determine the dominating influences. For this purpose, specific glancing angle deposited multilayered films and nanostructures were irradiated to constant ion fluence with the same 200 MeV Au ion beam at different incidence angles. Scanning electron microscopy of the stacks before and after swift Au ion irradiation revealed considerable changes in film morphology and density as a function of the ion incidence angle, such as an increased porosity of the silicon layers, accompanied by a layer swelling. In contrast, the SiOx layers did not show such effects, but exhibited clearly visible swift heavy ion tracks. The observed effects became stronger with decreasing ion incidence angle.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Robbie, K. Brett, M.J., and Lakhtakia, A. J. Vac. Sci. Technol. A13, 2991 (1995).Google Scholar
2 Lakhtakia, A. Messier, R. Brett, M.J. and Robbie, K. Innov. Mater. Res. 1, 165 (1996).Google Scholar
3 Hawkeye, M.M. and Brett, M.J. J. Vac. Sci. Technol. A25, 1317 (2007).Google Scholar
4 Toulemonde, M. Bouffard, S. and Studer, F. Nucl. Instrum. Meth. B91, 108 (1994).Google Scholar
5 Patzig, C. Rauschenbach, B. Erfurth, W. and Milenin, A. J. Vac. Sci. Technol. B25, 833 (2007).Google Scholar
6 Assmann, W. Huber, H. Steinhausen, Ch. Dobler, M. Glückler, H., and Weidinger, A. Nucl. Instrum. Meth. B89, 131 (1994).Google Scholar
7 Assmann, W. Nucl. Instrum. Meth. B64, 267 (1992).Google Scholar
8 Bergmaier, A. Dollinger, G. and Frey, C.M. Nucl. Instrum. Meth. B99, 488 (1995).Google Scholar
9 Klaumünzer, S., Nucl. Instrum. Meth. B215, 345 (2004).Google Scholar
10 Klaumünzer, S., Changlin Li, S. Löffler, Rammensee, M. Schumacher, G. and Neitzert, H. Ch. Radiat. Eff. Defect. S. 108, 131 (1989).Google Scholar
11 Hedler, A. Klaumünzer, S., and Wesch, W. Nucl. Instrum. Meth. B242, 85 (2006).Google Scholar
12 Hedler, A. Klaumünzer, S., and Wesch, W. Phys. Rev. B72, 054108 (2005).Google Scholar
13 Huber, H. Assmann, W. Grötzschel, R., Mieskes, H.D. Mücklich, A., Nolte, H. Prusseit, W. Mater. Sci. Forum 248-249, 301 (1997).Google Scholar
14 Mayr, S.G. and Averback, R.S. Phys. Rev. B71, 134102 (2005).Google Scholar
15 Bolse, W. Mater. Sci. Eng. R12, 53 (1994).Google Scholar
16 Carlotti, J.-F. Touboul, A.D. Ramonda, M. Caussanel, M. Guasch, C. Bonnet, J. and Gaslot, J. Appl. Phys. Lett. 88, 041906 (2006).Google Scholar
17 Arnoldbik, W.M. Tomozeiu, N. and Habraken, F.H.P.M. Nucl. Instrum. Meth. B219, 312 (2004).Google Scholar
18 Benyagoub, A. Löffler, S., Rammensee, M. Klaumünzer, S., Saemann-Ischenko, G., Nucl. Instrum. Meth. B65, 228 (1992).Google Scholar
19 Audouard, A. Dural, J. Toulemonde, M. Lovas, A. Szenes, G. and Thomé, L., Phys. Rev. B54, 15690 (1996).Google Scholar
20 Trautmann, C. Klaumünzer, S., and Trinkaus, H. Phys. Rev. Lett. 17, 3648 (2000).Google Scholar