Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T11:19:46.675Z Has data issue: false hasContentIssue false

A Survey of Diverse Approximations for Microstructural Characterization using Powder Diffraction Data: β-Ni(OH)2, a Case Study

Published online by Cambridge University Press:  26 February 2011

Monste Casas-Cabanas
Affiliation:
[email protected], ICMAB-CSIC, Solid State Chemistry, Institut de Ciència de Materials de Barcelona, Campus UAB, Bellaterra, 08193, Spain
Juan Rodriguez-Carvajal
Affiliation:
[email protected], Institut Laue-Languevin (ILL), 6, rue Jules Horowitz, Grenoble, BP 156 - 38042, France
Judith Oro-Sole
Affiliation:
[email protected], Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193, Spain
M. Rosa Palacin
Affiliation:
[email protected], Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193, Spain
Get access

Abstract

The microstructural features of diverse samples are studied by powder X-ray diffraction using different methods for the analysis of the diffraction peak broadening. The results obtained are thoroughly analyzed taking into account the assumptions and simplifications done in each of the chosen methods (Scherrer, Stokes and Wilson, Williamson-Hall and Rietveld refinement) and direct observation of the studied specimens by transmission electron microscopy is used in order to contrast the results obtained. Classic simple methods that consider only size effects (Scherrer, Stokes and Wilson) or the combined effects of size and strains (Williamson-Hall) provide a rapid overview of the origins of line-broadening but the most reliable results are obtained when the whole diffraction pattern is taken into account (Rietveld refinement).

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fiala, J. and Snyder, R. L., in Defect and Microstructure Analysis by Diffraction, edited by Snyder, R. L., Fiala, J. and Bunge, H. (Oxford University Press Inc., New York, 1999) pp.23.Google Scholar
2. Weibel, A., Bouchet, R., Boulc'h, F., F. and Knauth, K. P., Chem. Mater. 17, 2378 (2005).Google Scholar
3. Ungár, T., Adv. Eng. Mater. 5, 323 (2003).Google Scholar
4. Balzar, D., Audebrand, N., Daymond, M. R., Fitch, A., Hewat, A., Langford, J. I., Bail, A. Le, Louër, D., Masson, O., McCowan, C. N., Popa, N. C., Stephens, P. W. and Toby, B. H., J. Appl. Cryst. 37, 911 (2004).Google Scholar
5. Scherrer, P., Gött. Nachr. 2, 98 (1918).Google Scholar
6. Williamson, G. K. and Hall, W. H., Acta Metall. 1, 22 (1953).Google Scholar
7. Rietveld, H. M., Acta Crystallogr. 22, 151 (1967).Google Scholar
8. Scardi, P., Leoni, M. and Dehlez, R., J. Appl. Cryst. 37, 381 (2004).Google Scholar
9. Lucks, I., Lamparter, P. and Mittemeijer, E. J., J. Appl. Cryst. 37, 300 (2004).Google Scholar
10. McBreen, J., in Modern aspects of electrochemistry, edited by White, R. E., Bockris, J. O'M. and Conway, B. E. (Plenum Press, New York, 1990) pp. 2963.Google Scholar
11. Delmas, C. and Tessier, C., J. Mater. Chem. 7, 1439 (1997).Google Scholar
12. Casas-Cabanas, M., Rodríguez-Carvajal, J., Canales-Vázquez, J. and Palacín, M.R., J. Mater. Chem. 16, 2925 (2006).Google Scholar
13. Bihan, S. Le, Figlarz, M., Electrochim. Acta 18, 123 (1973).Google Scholar
14. Audemer, A., Ph.D. Thesis, University of Picardie, 1997.Google Scholar
15. Tessier, C., Haumesser, P. H., Bernard, P. and Delmas, C., J. Electrochem. Soc. 146, 2059 (1999).Google Scholar
16. Roisnel, T. and Rodríguez-Carvajal, J., Mater. Sci. Forum 378, 118 (2000).Google Scholar
17. Rodríguez-Carvajal, J., Physica B 192, 55 (1993).Google Scholar
18. Thompson, P., Cox, D. E. and Hastings, J. B., J. Appl. Crystallogr. 20, 79 (1987)..Google Scholar
19. Greaves, C. and Thomas, M. A., Acta Crystallogr.B 42, 51 (1986).Google Scholar
20. Coman, G. T., in The art and science of growing crystals, edited by Gilman, J. J (John Wiley & Sons Inc., New York, 1963) pp 152162.Google Scholar
21. Casas-Cabanas, M., Hernández, J. C., Gil, V., Soria, M. L. and Palacín, M. R., Ind. Eng. Chem. Res. 43, 4957 (2004).Google Scholar
22. Langford, J. I. and Louër, D., Rep. Prog. Phys. 59, 131 (1996).Google Scholar
23. Caglioti, G., Paoletti, A. and Ricci, F. P., Nucl. Instrum. Methods 3, 223 (1958).Google Scholar
24. Louër, D., Weigel, D. and Langford, J. L., J. APpl. Cryst. 5, 353 (1972).Google Scholar
25. Langford, J. I. and Louër, D., J. Appl. Crystallogr. 15, 20 (1982).Google Scholar
26. Casas-Cabanas, M., Palacín, M. R. and Rodríguez-Carvajal, J., Powder Diffr. 20, 334 (2005).Google Scholar
27. Järvinen, M., J. Appl. Cryst. 26, 5225 (1993).Google Scholar
28. González-Platas, J. and Rodríguez-Carvajal, J., Graphic Fourier Program GFOURIER, Version 04.02. Univ. La Laguna, 2002.Google Scholar