Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T16:16:53.448Z Has data issue: false hasContentIssue false

Surface Structures and the Orthorhombic Transformation of Thin Film BaSi2 on Siucon

Published online by Cambridge University Press:  25 February 2011

R. A. Mckee
Affiliation:
Oak Ridge National Laboratory Oak Ridge, TN 37831
F. J. Walker
Affiliation:
F. J. Walker is with the University of Tennessee; J. R. Conner is with Oak Ridge Associated Universities
J.R. Conner
Affiliation:
Oak Ridge National Laboratory Oak Ridge, TN 37831
Get access

Abstract

The epitaxial structural development and surface reactions of barium metal with silicon have been studied as a function of surface coverage. BaSi2 is orthorhombic, and grows epitaxially on Si(001) and Si(111) for surface coverages greater than 1 monolayer (ML). From 0 to 1 ML a series of ordered surface structures develops that suggests a cubic Ba-Si compound. Reflection high energy electron diffraction (RHEED), Auger and x-ray photoelectron spectroscopy (XPS) data have been obtained in this thin film regime that support a chemical reaction and compound formation between barium and silicon for all barium coverages. In bulk form, at high pressures, BaSi2 can be stabilized into the cubic SrSi2 structure. We suggest that epitaxial strain at the silicon surface provides a mechanism for stabilizing the low-coverage precursors of the orthorhombic BaSi2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Tung, R. T., in Silicon-Molecular Beam Epitaxy, Vol.2, p. 13, ed. Kasper, E. and Bean, J.C., CRC press, 1988.Google Scholar
2) Tung, R. T., Poate, J. M., Bean, J. C., Gibson, J. M., and Jacobson, D. C., Thin Solid Films 93, 77, (1982).CrossRefGoogle Scholar
3) Phillips, J. M., in Silicon-Molecular Beam Epitaxy, Vol 1, p. 135, ed. Kasper, E. and Bean, J.C., CRC press, 1988.Google Scholar
4) Bean, J.C., in Silicon-Molecular Beam Epitaxy, Vol. 2, p. 65, ed. Kasper, E. and Bean, J.C., CRC press, 1988.Google Scholar
5) Akiyama, M., Kawarada, K., Hishi, S. and Kaminishi, K., Materials Research Society Meeting, Palo Alto, Calif., April 1986.Google Scholar
6)Komatsu, T., Tanaka, O., Matusita, K., Takata, M., and Yamashita, T., Jpn. J. Appi. Phys. 27, L1025 (1988).Google Scholar
7) Fork, D. K., Fenner, D. B., Barton, R. W., Phillips, J. M., Connel, G. A. N., Boyce, J. B., and Geballe, T. H., Appl. Phys. Lett. 57,1161 (1990).CrossRefGoogle Scholar
8) Luo, Li, Muenchausen, R. E., Maggiore, C. J., Jimenez, J. R., and Schowalter, L. J., AppL Phys. Lett. 58, 419 (1991).Google Scholar
9) McKee, R. A., Walker, F. J., Conner, J. R., and Specht, E.D., Appl. Phys. Lett. submitted for publication.Google Scholar
10) Massalski, T. B., Murray, J. L., Bennett, L. H., and Baker, H., Binary Alloy Phase Diagrams, Vol. 1, American Society Metal, 1986.Google Scholar
11) Evers, J., J. Less-Common Met. 58, 58 (1978).Google Scholar
12) Evers, J., J. Less-Common Met. 69, 399 (1980).Google Scholar
13) Janzon, K. H., Schafer, H., and Weiss, A., Z. Anorg. AIug. Chem. 372, 87 (1970).Google Scholar
14) Wells, A. F., Structural Inorganic Chemistry, p. 498, Clarendon Press, 1975.Google Scholar