Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:26:00.323Z Has data issue: false hasContentIssue false

Surface States Influence in Al Schottky Barrier of Ge Nanowires

Published online by Cambridge University Press:  18 March 2013

Hanay Kamimura*
Affiliation:
Departamento de Física, Universidade Federal de São Carlos CEP 13565-905, CP 676, São Carlos, São Paulo, Brasil
Ricardo A. Simon
Affiliation:
Universidade Tecnológica Federal do Paraná - Campus Apucarana
Olivia M. Berengue
Affiliation:
Universidade Estadual Paulista - Unesp
Cleber A. Amorim
Affiliation:
Departamento de Física, Universidade Federal de São Carlos CEP 13565-905, CP 676, São Carlos, São Paulo, Brasil
Adenilson J. Chiquito
Affiliation:
Departamento de Física, Universidade Federal de São Carlos CEP 13565-905, CP 676, São Carlos, São Paulo, Brasil
Edson R. Leite
Affiliation:
Laboratório Interdisciplinar de Eletroquímica e Cerâmicas, Departamento de Química, Universidade Federal de São Carlos, CEP 135665-905, CP 676, São Carlos, São Paulo, Brasil
Get access

Abstract

Aiming the understanding of how the application to devices is affected by the presence of oxygen in semiconductor nanostructures, Al/Ge-nanowires Schottky devices were fabricated without any previous treatment to remove the native oxide from nanowires' surface, originated during the growth process. Electronic transport properties of these devices were investigated and it was observed that interface states originated from the disordered oxide layer effectively pinned the Fermi level at the Ge surface, affecting Schottky barriers. Numerical calculations were made to complement this study agreeing with experiments.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wu, Y. and Yang, P., Chem. Mater.12, 605 (2000).CrossRefGoogle Scholar
Lauhon, L. J., Gudiksen, M. S., Wang, C. L. and Lieber, C. M., Nature 420, 57 (2002).CrossRefGoogle Scholar
Hayden, O., Greytak, A. B. and Bell, D. C., Adv. Mater. 17, 701 (2005).CrossRefGoogle Scholar
Tutuc, E., Appenzeller, J., Reuter, M. C. and Guha, S., Nano Lett. 6, 2070 (2006).CrossRefGoogle Scholar
Xiang, J., Lu, W., Hu, Y. J., Wu, Y., Yan, H. and Lieber, C. M., Nature 441, 489 (2006).CrossRefGoogle Scholar
Hu, Y. J., Churchill, H. O. H., Reilly, D. J., Xiang, J., Lieber, C. M. and Marcus, C. M., Nat. Nanotechnol. 2, 622 (2007).CrossRefGoogle Scholar
Yan, H., Choe, H. S., Nam, S. W., Hu, Y., Das, S., Klemic, J. F., Ellenbogen, J. C. and Lieber, C. M., Nature 240, 470 (2011).Google Scholar
Mott, N. F., Metal-Insulator Transitions, 2nd ed. (Taylor and Francis, London, 1990).CrossRefGoogle Scholar
Kamimura, H., Araujo, L. S., Berengue, O. M., Amorim, C. A., Chiquito, A. J. and Leite, E. R., Physica E 44, 1776 (2011).CrossRefGoogle Scholar
Lanfredi, A. J. C., Geraldes, R. R., Berengue, O. M., Leite, E. R. and Chiquito, A. J., J. Appl. Phys. 105, 023708 (2009).CrossRefGoogle Scholar
Schricker, A. D., Joshi, S. V., Hanrath, T., Banerjee, S. K. and Korgel, B. A., J. Phys. Chem. B 110, 6816 (2006).CrossRefGoogle Scholar
Berengue, O. M., Simon, R. A., Leite, E. R. and Chiquito, A. J., J. Phys. D. 44, 215405 (2011).CrossRefGoogle Scholar
Wagner, R. S. and Ellis, W. C., Appl. Phys. Lett. 4, 89 (1964)CrossRefGoogle Scholar
Joint Committee on Powder Difraction Standards (JCPDS), Card No. 4–545 Google Scholar
Wang, D., Chang, Y., Wang, Q., Cao, J., Farmer, D. B., Gordon, R. G. and Dai, H., J. Am. Chem. Soc. 37, 1160 (2004).Google Scholar
Hanrath, T. and Korgel, B. A., J. Am. Chem. Soc. 126, 15466 (2004).CrossRefGoogle Scholar
Wang, D., Wang, Q., Javey, A., Tu, R., Dai, H., Kim, H., McIntyre, P. C., Krishnamohan, T. and Saraswat, K. C., Appl. Phys. Lett. 83, 12 (2003).Google Scholar
Yu, B., Sun, X. H., Calebotta, G. A., Dholakia, G. R. and Meyyappan, M., J. Cluster Sci. 17, 579 (2006).CrossRefGoogle Scholar
Zhang, Z., Yao, K., Liu, Y., Jin, C., Liang, X., Chen, Q., Peng, L.-M., Adv. Funct. Mater. 17, 2478 (2007).CrossRefGoogle Scholar
Bardeen, J., Phys. Rev. 71, 717 (1947).CrossRefGoogle Scholar
Lu, G. N., Barret, C. Neffati, T., Solid-State Electron. 33, 1 (1990).CrossRefGoogle Scholar
Chiquito, A. J., Amorim, C. A., Berengue, O. M., Araujo, L. S., Bernardo, E. P., Leite, E. R., J. Phys.: Condens. Matter 24, 225303 (2012).Google Scholar
Nishimura, T., Kita, K., Toriumi, A., Appl. Phys. Lett. 91, 123123 (2007).CrossRefGoogle Scholar