Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:37:42.486Z Has data issue: false hasContentIssue false

Surface Morphology of Ultrathin Oxide Formed on Si(100)

Published online by Cambridge University Press:  10 February 2011

T. Hattori
Affiliation:
Department of Electrical and Electronic Engineering, Musashi Institute of Technology, Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan, [email protected]
M. Fujimura
Affiliation:
Department of Electrical and Electronic Engineering, Musashi Institute of Technology, Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan, [email protected]
H. Nohira
Affiliation:
Department of Electrical and Electronic Engineering, Musashi Institute of Technology, Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan, [email protected]
Get access

Abstract

The atomic-scale surface roughness of ultrathin thermal oxides formed on Si(100) were studied as a function of oxide film thickness up to the thickness of 2.0 nm. The height deviation on oxide surface is limited within single atomic-step height of 0.135 nm on Si(100) surface below the oxide film thickness of about 1 nm, but above this thickness the height deviation increases with the increase in thickness at 700°C. This increase in height deviation with thickness must be produced by the relaxation of oxidation–induced stress in bulk SiO2. Furthermore, the oscillation in surface roughness with constant amplitude and its oscillating period in oxide film thickness of 0.19 nm were found.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Feldman, C., Gusev, E. P., and Garfunkel, E., in Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, NATO ASI Series, edited by Garfunkel, E., Gusev, E., and Vul, A.' (Kluwer, Dordrecht, The Netherlands, 1998) pp. 124.Google Scholar
[2] Hattori, T., Critical Rev. Solid State Mat. Sci. 20, 339 (1995).10.1080/10408439508240718Google Scholar
[3] Ohashi, M. and Hattori, T., Jpn. J. Appl. Phys. 36, L397 (1997).10.1143/JJAP.36.L397Google Scholar
[4] Ohishi, K. and Hattori, T., Jpn. J. Appl. Phys. 33, L675 (1994).10.1143/JJAP.33.L675Google Scholar
[5] Hattori, T., Fujimura, M., Yagi, T., and Ohashi, M., Appl. Surf. Sci. 123/124, 87 (1998).10.1016/S0169-4332(97)00432-7Google Scholar
[6] Miyata, N., Watanabe, H., and Ichikawa, M., Appl. Phys. Lett. 72, 1715 (1998).10.1063/1.121161Google Scholar
[7] Bennett, M. and Mattsson, L., Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D. C., 1989) p. 38.Google Scholar
[8] Yoshinobu, T., Iwamoto, A., and Iwasaki, H., Jpn. J. Appl. Phys. 33, 383 (1994).10.1143/JJAP.33.383Google Scholar
[9] Gelius, U., Wannberg, B., Baltzer, P., Fellner-Feldegg, H., Carlsson, G., Johansson, C. -G., Larsson, J., Munger, P. and Vergerfos, G., J. Electron Spectrosc. & Relat. Phenom. 52 (1990) 747.10.1016/0368-2048(90)85063-FGoogle Scholar
[10] Nohira, H., Tamura, Y., Ogawa, H. and Hattori, T., IEICE Trans. Electron. E75–C (1992) 757.Google Scholar
[11] Ishikawa, K., Ogawa, H., Oshida, S., Suzuki, K., and Fujimura, S., Ext. Abstr. of Intern. Conf. on Solid State Devices and Materials, 1995, Osaka, pp.500502.Google Scholar
[12] Sugita, Y., Awaji, N., and Watanabe, S., Ext. Abstr. of Intern. Conf. on Solid State Devices and Materials, Yokohama, 1996, pp.380382.Google Scholar
[13] Nohira, H. and Hattori, T, Appl. Surf. Sci. 117/118, 119 (1997).10.1016/S0169-4332(97)80063-3Google Scholar
[14] Yasaka, Y., Uenaga, S., Yasutake, H., Takakura, M., Miyazaki, S., and Hirose, M., Mater. Res. Soc. Symp. Proc. 259, 385 (1992).10.1557/PROC-259-385Google Scholar
[15] Torres, V. J. B., Interface Science 3, 133 (1995).10.1007/BF00207015Google Scholar