Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T02:52:49.775Z Has data issue: false hasContentIssue false

Surface modification of bacterial magnetic nanoparticles using artificial polypeptides consisting of a repeated asparagine-serine dipeptide and a transmembrane peptide

Published online by Cambridge University Press:  03 September 2012

Toru Honda
Affiliation:
Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, 184-8588, Japan
Tomoko Yoshino
Affiliation:
Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, 184-8588, Japan
Tsuyoshi Tanaka
Affiliation:
Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, 184-8588, Japan
Tadashi Matsunaga
Affiliation:
Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, 184-8588, Japan
Get access

Abstract

Surface modification is an important part of fabricating nanoparticles with specific properties and functions. We have designed a dipeptide, which we call NS polypeptide, that consists of four asparagine (N) residues and one serine (S) residue, as a molecule for nanoparticle surface modification. Surface modification of magnetic nanoparticles with the NS polypeptide results in reduction of particle-particle and particle-cell interactions. Here, we describe the surface modification and functionalization of bacterial magnetic particles (BacMPs) by spontaneous integration of temporin L conjugated to NS polypeptide. BacMP membranes were modified temporin L. Furthermore, peptide-modified BacMPs showed high dispersibility in aqueous solution compared to unmodified BacMPs. This surface modification technique may represent a new strategy for reducing non-specific binding of nanoparticles to proteins or cells for use in a variety of protein- or cell-associated applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Huth, S., Lausier, J., Gersting, S.W., Rudolph, C., Plank, C., Welsch, U., and Rosenecker, J., The Journal of Gene Medicine 6, 923–36 (2004).10.1002/jgm.577Google Scholar
2. Choi, K.Y., Chung, H., Min, K.H., Yoon, H.Y., Kim, K., Park, J.H., Kwon, I.C., and Jeong, S.Y., Biomaterials 31, 106–14 (2010).10.1016/j.biomaterials.2009.09.030Google Scholar
3. Gupta, A.K. and Gupta, M., Biomaterials 26, 1565–73 (2005).10.1016/j.biomaterials.2004.05.022Google Scholar
4. Fang, C., Shi, B., Pei, Y.-Y., Hong, M.-H., Wu, J., and Chen, H.-Z., European Journal of Pharmaceutical Sciences⃞ : Official Journal of the European Federation for Pharmaceutical Sciences 27, 2736 (2006).10.1016/j.ejps.2005.08.002Google Scholar
5. Patil, S., Sandberg, A., Heckert, E., Self, W., and Seal, S., Biomaterials 28, 4600–7 (2007).10.1016/j.biomaterials.2007.07.029Google Scholar
6. Lewin, M., Carlesso, N., Tung, C.H., Tang, X.W., Cory, D., Scadden, D.T., and Weissleder, R., Nature Biotechnology 18, 410–4 (2000).10.1038/74464Google Scholar
7. Qian, X., Peng, X.-H., Ansari, D.O., Yin-Goen, Q., Chen, G.Z., Shin, D.M., Yang, L., Young, A.N., Wang, M.D., and Nie, S., Nature Biotechnology 26, 8390 (2008).10.1038/nbt1377Google Scholar
8. Takahashi, M., Yoshino, T., and Matsunaga, T., Biomaterials 31, 4952–7 (2010).10.1016/j.biomaterials.2010.02.048Google Scholar
9. Matsunaga, T. and Kamiya, S., Applied Microbiology 328332 (1987).Google Scholar
10. Nakamura, N., Hashimoto, K., and Matsunaga, T., Analytical Chemistry 272, 268272 (1991).10.1021/ac00003a015Google Scholar
11. Okamura, Y., Takeyama, H., Sekine, T., Sakaguchi, T., Wahyudi, A.T., Sato, R., Kamiya, S., and Matsunaga, T., Appl. Environ. Microbiol. 69, 42744277 (2003).10.1128/AEM.69.7.4274-4277.2003Google Scholar
12. Yoshino, T. and Matsunaga, T., Biochem. Biophys. Res. Commun 338, 16781681 (2005).10.1016/j.bbrc.2005.10.148Google Scholar
13. Yoshino, T. and Matsunaga, T., Appl. Environ. Microbiol. 72, 465471 (2006).10.1128/AEM.72.1.465-471.2006Google Scholar
14. Tanaka, T., Kokuryu, Y., and Matsunaga, T., Applied and Environmental Microbiology 74, 7600–6 (2008).10.1128/AEM.00162-08Google Scholar
15. Tanaka, T., Takeda, H., Kokuryu, Y., and Matsunaga, T., Analytical Chemistry 76, 3764–9 (2004).10.1021/ac035361mGoogle Scholar
16. Matsunaga, T., Trends Biotechnol. 9, 9195 (1991).10.1016/0167-7799(91)90031-CGoogle Scholar
17. Yang, C.-dong, Takeyama, H., Tanaka, T., and Matsunaga, T., Culture 29, 1319 (2001).Google Scholar
18. Iwahori, A., Hirota, Y., Sampe, R., Miyano, S., Takahashi, N., Sasatsu, M., Kondo, I., Numao, N., Biol. Pharm. Bull. 20, 805808 (1997).10.1248/bpb.20.805Google Scholar
19. Lee, SH, Lee, DG, Yang, ST, Kim, Y, Kim, JI, Hahm, KS, Shin, SY, Protein Pept. Lett. 9, 395402 (2002)10.2174/0929866023408535Google Scholar
20. Balkwill, D.L., Maratea, D., and Blakemore, R.P., Journal of Bacteriology 141, 1399–408 (1980).Google Scholar
21. Nakamura, N., Burgess, J.G., Yagiuda, K., Kudo, S., and Sakaguchi, T., Analytical Chemistry 2036-2039 (1993).10.1021/ac00063a018Google Scholar