Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T13:17:28.320Z Has data issue: false hasContentIssue false

Surface Lattice Strain and the Electronic Structure of Thin Mercury Overlayers

Published online by Cambridge University Press:  21 February 2011

Shikha Varma
Affiliation:
Department of Physics, Syracuse University, Syracuse, New York 13244-1130
Y. J. Kime
Affiliation:
Department of Physics, Syracuse University, Syracuse, New York 13244-1130
P. A. Dowben
Affiliation:
Department of Physics, Syracuse University, Syracuse, New York 13244-1130
M. Onelliont
Affiliation:
Department of Physics, University of Wisconsin, Madison, Wisconsin 53706
Get access

Abstract

The stress in the surface of a thin (0–10 monolayer) film of mercury can be relieved by either changing the substrate and consequently changing adlayer lattice constants or by growing thicker films. An empirical relationship between strain and the valence electronic structure of mercury overlayers can be demonstrated, though we present evidence that this relationship can be altered and destroyed by crystallography changes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Onellion, M., Kime, Y. J., Dowben, P. A. and Tache, N., J. Phys. C. Solid State Phys. 20, L633 (1987).Google Scholar
2. Dowben, P. A., Varma, Shikha, Kime, Y. J., Mueller, D. R., and Onellion, M., Physik, Z., (1988).Google Scholar
3. Jansen, H. J. F., Freeman, A. J., Weinert, M. and Wimmer, E., Phys. Rev. B28 593 (1983).Google Scholar
4. Miedema, A. R., Dorleijn, J. W. F., Phil. Mag. B43, 251 (1981).CrossRefGoogle Scholar
5. Onellion, M., Erskine, J. L., Kime, Y. J., Varma, S. and Dowben, P. A., Phys. Rev. B33, 8833 (1986).CrossRefGoogle Scholar
6. Dowben, P. A., Kime, Y. J., Varma, S., Onellion, M. and Erskine, J. L., Phys. Rev. B36, 2519 (1987).CrossRefGoogle Scholar
7. Dowben, P. A., Onellion, M. and Kime, Y. J., Scanning Microsco. 2, 177 (1988).Google Scholar
8. Jones, R. G. and Perry, D. L., Vacuum, 31, 493 (1981).CrossRefGoogle Scholar
9. Jones, R. G. and Perry, D. L., Surf. Sci. 71, 59 (1979).Google Scholar
10. Jones, R. G., Perry, D. L., Surf. Sci. 82, 540 (1979).CrossRefGoogle Scholar
11. Merwe, J. H. van der, J. App. Phys. 41, 4725 (1970).Google Scholar
12. Merwe, J. H. van der, Treastise on Material Science and Technology, vol 2, edited by Herman, H., Academic Press, New York, p. 90 (1973).Google Scholar
13. Markov, I. and Stoyanov, S., Contemp. Phys. 28, 267 (1987).Google Scholar
14. Jones, R. G. and Tong, A. W-L., Surf. Sci. 188, 87 (1987).Google Scholar
15. Handbook of Chemistry and Physics, 51st Edition, Weast, R. C., Ed.: Chemical Rubber Co. Cleveland, OH p. 0146 (1971).Google Scholar
16. Simmons, G. and Wang, H., Single Crystal Elastic Const. and Calculated Aaaregate Properties: A Handbook, (MIT Press, Cambridge, MA, 1971).Google Scholar
17. Worster, J. and March, N. H., Solid State Commun. 2, 245 (1964).Google Scholar
18. Egelhoff, W. F., Perry, D. L. and Linnett, J. W., Surf. Sci. 54, 670 (1976).Google Scholar
19. Becker, G. E. and Hagstrum, H. G., J. Vac. Sci. Technol. 10, 31 (1973).Google Scholar
20. Svensson, S., Mortensson, N., Basilier, E., Malmquist, P. A., Gelius, U. and Siegbahn, K., J. Electron Spectrosc. Relat. Phenom. 9, 51, (1976).Google Scholar
21. Dowben, P. A., CRC Critical Reviews in Solid State and Material Science 13, 191 (1987).Google Scholar
22. Neighbours, J. R. and Alers, G. A., Phys. Rev. 111, 707 (1958). The value of μAg and Poisson's Ratio of Ag are taken at 100° K.CrossRefGoogle Scholar
23. Hearmon, R. F. S., Adv. in Phys. 5, 323 (1956). (μHg , E and Poisson's ratio are at 83° K and are determined by Voigt averages.)Google Scholar
24. Crocker, A. G. and Singleton, G. A. A. M., Phys. Stat. Sol. (a) 6, 635 (1971).Google Scholar
25. Jesser, W. A., Wilsdorf, D. Kuhlmann, Phys. Stat. Sol. 19, 95 (1967).Google Scholar
26. Bruinsma, R. and Zangwill, A., J. Physique 47, 2055 (1986).Google Scholar
27. Onellion, M., Dowben, P. A. and Erskine, J. L., Phys. Lett. A. 130, 171 (1988).Google Scholar
28. Varma, Shikha, Kime, Y. J., Dowben, P. A., Onellion, M. and Erskine, J. L., J. Phys. C., Solid State, submitted.Google Scholar
29. Dowben, P. A., Kime, Y. J., Varma, Shikha, Onellion, M. and Erskine, J. L., J. Vac. Sci. Technol.,. Submitted.Google Scholar
30. List, R. S., Woicik, J. C., Lindau, I., Spicer, W. E., J. Vac. Sci. Technol. B5, 1279 (1987).Google Scholar