Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:46:05.867Z Has data issue: false hasContentIssue false

Surface Crystallization and Thin Film Melting in Normal Alkanes

Published online by Cambridge University Press:  15 February 2011

X. Z. Wu
Affiliation:
Physics Dept., Northern Illinois Univ. and Materials Science Div., Argonne Natl. Lab.
H. H. Shag
Affiliation:
Dept. of Physics, The Ohio State University, Columbus, OH 43210 Corporate Research Science Laboratories, Exxon Research and Engineering Co., Route 22 East, Annandale, NJ 08801
B. M. Ocko
Affiliation:
physics Department, Brookhaven National Laboratory, Upton, NY 11973
M. Deutsch
Affiliation:
physics Department, Bar Ilan University, Ramat Gan 52900, Israel
S. K. Sinha
Affiliation:
Corporate Research Science Laboratories, Exxon Research and Engineering Co., Route 22 East, Annandale, NJ 08801
M. W. Kim
Affiliation:
Corporate Research Science Laboratories, Exxon Research and Engineering Co., Route 22 East, Annandale, NJ 08801
H. E. King JR.
Affiliation:
Corporate Research Science Laboratories, Exxon Research and Engineering Co., Route 22 East, Annandale, NJ 08801
E. B. Sirota
Affiliation:
Corporate Research Science Laboratories, Exxon Research and Engineering Co., Route 22 East, Annandale, NJ 08801 invited speaker
Get access

Abstract

Normal alkanes of carbon number n>14 exhibit surface crystallization at their liquid-vapor interface. This has been investigated with x-ray reflectivity, grazing incidence scattering and surface tension measurements. The structure and thermodynamics of the surface layer is consistent with a monolayer of the bulk rotator phase occurring at the surface above the bulk melting temperature. On the other hand, thin films of alkanes on SiO2, exhibit a reduction of the melting temperature. The surface crystalline phase is observed for carbon number n>14. The vanishing of surface phase for small n may be due to a transition from surface freezing to surface melting behavior. These measurements can yield the relative surface energies of the various phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Small, D. M., The Physical Chemistry of Lipids: From Alkanes to Phospholipids (Plenum, New York, 1986).Google Scholar
2) Müller, A., Proc. R. Soc. London, ser A 138, 514 (1932).Google Scholar
3) Craievich, A., Doucet, J., and Denicolo, I., Phys. Rev. B 32, 4164 (1985); A. Craievich, I. Denicolo, and J. Doucet, Phys. Rev. B 30, 4782 (1984); J. Doucet, I. Denicolo, A. F. Craievich, and C. Germain, J. Chem. Phys. 80, 1647 (1984); I. Denicolo, J. Doucet, and A. F. Craievich, J. Chem. Phys. 78, 1465 (1983); J. Doucet, I. Denicolo, and A. Craievich, J. Chem. Phys. 75, 1523 (1981); J. Doucet, I. Denicolo, A. Craievich, and A. Collet, J. Chem. Phys. 75, 5125 (1981).Google Scholar
4) Ungar, G. and Masic, N., J. Phys. Chem. 89, 1036 (1985).Google Scholar
5) Ungar, G., J. Phys. Chem. 87, 689 (1983).Google Scholar
6) Dorset, D. L. and Hu, H., Acta Cryst. A 47, 543 (1991); D. L. Dorset, EMSA Bull. 20, 54 (1990); D. L. Dorset, B. Moss, J. C. Wittmann, and B. Lotz, Proc. Natl. Acad. Sci. 81, 1913 (1984).Google Scholar
7) Sirota, E. B., King, H. E. Jr.,Singer, D. M., and Shao, H. H., J. Chem. Phys. 98, 5809 (1993).Google Scholar
8) Sirota, E. B. and Singer, D. M., J. Chem. Phys. 101, 10873 (1994).Google Scholar
9) Sirota, E. B., King, H. E. Jr., Shao, H. H., and Singer, D. M., J. Phys. Chem. January (1995).Google Scholar
10) Sirota, E. B., King, H. E. Jr., Hughes, G. J., and Wan, W. K., Phys. Rev. Lett. 68, 492 (1992).Google Scholar
11) Sirota, E. B., Singer, D. M., and King, H. E. Jr., J. Chem. Phys. 100, 1542 (1994).Google Scholar
12) Dash, J. G., Contemp. Phys. 30, 89 (1989).Google Scholar
13) Lipowsky, R., J. Appl. Phys. 55, 2485 (1984).Google Scholar
14) Moncton, D. E., Pindak, R., Davey, S. C., and Brown, G. S., Phys. Rev. Lett. 49, 1865 (1982).Google Scholar
15) Sirota, E. B., Pershan, P. S., Sorensen, L. B., and Collett, J., Phys. Rev. A 36, 2890 (1987).Google Scholar
16) Noh, D. Y., Brock, J. D., Fossum, J. O., Hill, J. P., Nuttall, W. J., Litster, J. D., and Birgeneau, R. J., Phys. Rev. B 43, 842 (1991).Google Scholar
17) Geer, R., Stoebe, T., and Huang, C. C., (1994).Google Scholar
18) Sirota, E. B., Pershan, P. S., Amador, S., and Sorensen, L. B., Phys. Rev. A 35, 2283 (1987).Google Scholar
19) Swanson, B. S., Stragier, H., Tweet, D. J., and Sorensen, L. B., Phys. Rev. Lett. 62, 909 (1989).Google Scholar
20) Als-Nielsen, J., Christensen, F., and Pershan, P. S., Phys. Rev. Lett. 48, 1107 (1982).Google Scholar
21) Ocko, B. M., Braslau, A., Pershan, P. S., Als-Nielsen, J., and Deutsch, M., Phys. Rev. Lett. 57, 94 (1986).Google Scholar
22) Pershan, P. S., Braslau, A., Weiss, A. H., and Als-Nielsen, J., Phys. Rev. A 35, 4800 (1987).Google Scholar
23) Kellog, G. J., Pershan, P. S., Kawamoto, E. H., Foster, W., Deutsch, M., and Ocko, B. M., Phys. Rev. E (submitted).Google Scholar
24) Ocko, B. M., Phys. Rev. Lett. 64, 2160 (1990).Google Scholar
25) Wu, X. Z., Sirota, E. B., Sinha, S. K., Ocko, B. M., and Deutsch, M., Phys. Rev. Lett. 70, 958 (1993).Google Scholar
26) Wu, X. Z., Ocko, B. M., Sirota, E. B., Sinha, S. K., Deutsch, M., Cao, B. H., and Kim, M. W., Science 261, 1018 (1993).Google Scholar
27) Wu, X. Z., Sirota, E. B., Ocko, B. M., Sinha, S. K., Deutsch, M., and Kim, M. W., (to be published).Google Scholar
28) Wu, X. Z., Ocko, B. M., Sirota, E. B., Sinha, S. K., and Deutsch, M., Physica A 200, 751 (1993).Google Scholar
29) Braslau, A., Deutsch, M., Pershan, P. S., Weiss, A. H., Als-Nielsen, J., and Bohr, J., Phys. Rev. Lett. 54, 114 (1985).Google Scholar
30) Braslau, A., Pershan, P. S., Swislow, G., Ocko, B. M., and Als-Nielsen, J., Phys. Rev. A 38, 2457 (1988).Google Scholar
31) Sanyal, M. K., Sinha, S. K., Huang, K. G., and Ocko, B. M., Phys. Rev. Lett. 66, 628 (1991).Google Scholar
32) Ocko, B. M., Wu, X. Z., Sirota, E. B., Sinha, S. K., and Deutsch, M., Phys. Rev. Lett. 72, 242 (1994).Google Scholar
33) Shao, H., King, H. E. Jr., Sirota, E. B., and Singer, D. M., Bull. A.P.S. 38, 535 (1993).Google Scholar
34) Shao, H., King, H. E. Jr., Singer, D. M., and Sirota, E. B., (to be published).Google Scholar
35) Maroncelli, M., Strauss, H. L., and Snyder, R. G., J. Chem. Phys. 82, 2811 (1985).Google Scholar
36) Jarrett, W. L., Mathias, L. J., Alamo, R. G., Mandelkern, L., and Dorset, D. L., Macromolecules 25, 3468 (1992).Google Scholar
37) Sirota, E. B., J. Phys. (Paris) 49, 1443 (1988).Google Scholar
38) Sirota, E. B., Safinya, C. R., Smith, G. S., Plano, R., Roux, D., and Clark, N. A., in Geometry and Thermodynamics, edited by Toledano, J. C. (Plenum, New York, 1990), p. 255.Google Scholar
39) Wu, X. Z., Deutsch, M., Ocko, B. M., Tang, H., Sirota, E. B., and Sinha, S. K., (to be published).Google Scholar
40) Earnshaw, J. C. and Hughes, C. J., Phys. Rev. A 46, R4494 (1992).Google Scholar
41) Deutsch, M., Wu, X. Z., Sirota, E. B., Sinha, S. K., Ocko, B. M., and Magnussen, O. M., Europhys. Lett. (submitted).Google Scholar